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Abstract

We indicate an infinite family of 3–dimensional topological spaces,
which are homeomorphic to boundaries of certain word–hyperbolic
groups. The groups are right angled hyperbolic Coxeter groups, whose
nerves are flag–no–square triangulations of 3–dimensional manifolds.
We prove that any 3–dimensional polyhedral complex (in particular,
any 3–manifold) can be triangulated in a flag–no–square way.

MSC: 20F67; 57Q15; 20F65; 20F55

Keywords: Word-hyperbolic group, Gromov boundary, Flag–no–square
triangulation

1 Introduction

Gromov boundary of a word–hyperbolic group is known to be a compact finite
dimensional metrizable space. It is connected unless the group essentially
splits (as an amalgamated free product or as HNN-extension) over a finite
subgroup. When the boundary is connected, it has no local cut point unless
the group essentially splits over a two-ended subgroup [1].
Not many explicit topological spaces are known to be homeomorphic to

the boundary of a word-hyperbolic group. Restricting to the case of inde-
composable groups, we may ask for such spaces that are connected and have
no local cut points. In dimension 1 there are precisely two possibilities: the
Sierpiński carpet M1,2 and the Menger curve M1,3 [14]. Surprisingly little is
known in dimensions above 1. The only known examples, apart from spheres
Sn and Sierpiński compactaMn,n+1, are Menger universal compactaM2,5 and
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M3,7 [6], and certain 2–dimensional compacta Πp called Pontriagin surfaces
[5].
Spheres (and Sierpiński compacta) occur as boundaries of fundamen-

tal groups of hyperbolic manifolds (with totally geodesic boundary). The
Menger compacta M2,5 and M3,7 occur as boundaries of right–angled hyper-
bolic buildings of dimension 3 and 4 respectively. Consequently, they are the
boundaries of discrete cocompact automorphism groups of such buildings.
Pontriagin surfaces Πp (where p is a prime) are characterized by dimQ(Πp) =
dimZq(Πp) = 1 for any prime q distinct from p, and dimZp(Πp) = 2, where
dimG is the cohomological dimension for coefficients G. They are the bound-
aries of certain right–angled hyperbolic Coxeter groups.
Dranishnikov’s method [5] combined with a recent result of Fischer [7]

yields also the Pontriagin sphere (which is different from the Pontriagin sur-
faces Πp). It occurs as the boundary of all right–angled hyperbolic Coxeter
groups whose nerves are closed orientable surfaces (see Remarks 3.6 and
4.4(1)).

In this paper we indicate another family of topological spaces, in dimen-
sion 3, that are the boundaries of right–angled hyperbolic Coxeter groups.
These are some of the trees of manifolds (named so in [8]) introduced by
Jakobsche in [10]. Apart from being connected, these spaces are homoge-
neous, and thus have no local cut points. Moreover, they are (examples of)
the Cantor manifolds, which means that no subset of codimension 2 or more
(i.e. of dimension ≤ 1) separates them.
Trees of manifolds are defined as inverse limits of appropriate systems

of iterated connected sums of manifolds, see Section 3. They generalize the
Pontriagin sphere which is obtained in this way out of 2–dimensional tori.
By the already mentioned result of Fischer [7], certain trees of manifolds
occur as boundaries of those right–angled hyperbolic Coxeter groups whose
nerves are manifolds, PL–triangulated in flag–no–square way. An essential
part of this paper is the construction of flag–no–square triangulations for
any 3–dimensional polyhedral complex, in particular for any 3–dimensional
PL–manifold. This construction uses certain properties of the 600–cell, and
occupies Section 2.
Our approach cannot be widely extended to higher dimensions. It is

known for example that 4–dimensional homology spheres do not admit flag–
no–square triangulations (see Section 2.2 in [12] and Theorem 5.6 in the
appendix). As a consequence, no manifold in dimension above 4 has a flag-
no-square PL triangulation. The question which 4–manifolds admit flag–no–
square triangulations is (according to our knowledge) an open problem. We
indicate a class of such 4-manifolds in Remark 4.4(2).

2



On the other hand, our construction of flag–no–square triangulations in
dimension 3 waits for other applications. For example, it might be useful for
constructing word–hyperbolic groups whose boundaries have exotic cohomo-
logical dimensions for various coefficients, in the spirit of [5].

We close the paper with an appendix containing the summary of what is
known about flag–no–square triangulations.

We are grateful to Tadeusz Januszkiewicz for posing the problem of flag–
no–square subdivision of 3–dimensional simplicial complexes and for moti-
vating us. We thank Paweł Krupski for pointing to us various topological
references.

2 Flag-no-square subdivision in dimension 3

In this section we show that any simplicial complex of dimension ≤ 3 can
be subdivided to satisfy flag–no–square property. We recall the definition of
flag–no–square property, and briefly outline its geometric role, in the appen-
dix to this paper.

Denote byX600 the boundary of the 600–cell (see e.g. [2]), a 3–dimensional
euclidean simplicial polyhedron homeomorphic to the 3–dimensional sphere.
It consists of 600 3–dimensional cells and 120 vertices. Its vertex links are
icosahedra and edge links are pentagons. We will only exploit the combina-
torial simplicial structure of X600.
A starting point for our construction of flag–no–square subdivisions is the

following.

Lemma 2.1. X600 satisfies flag–no-square property.

Proof. One possible argument goes by direct inspection. Namely, to see
flagness, note that any collection of vertices in X600 that are pairwise con-
nected with edges is contained in the star of any of those vertices. Moreover,
star of any vertex is a full subcomplex in X600 and, since it is a simplicial
cone over the icosahedron, it is flag. Thus, any such collection of vertices
spans a simplex in the star of any vertex in this collection.
To see flag–no–square property, note that if the distance between two

vertices x, y in the 1–skeleton of X600 is equal 2, there are only two possi-
bilities for the relative position of x and y. Either there is only one point
at distance 1 from both x and y or there are exactly three points with this
property and they form a 2 dimensional simplex M(x, y) of X600. Thus, if
we have a cycle of length four in the 1–skeleton of X600 and one pair x, y of
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the opposite vertices of this cycle is not joined by an edge, then the distance
between x and y is 2 and the second pair belongs to M(x, y), so it is joined
by an edge. This completes the first argument.
We present also another (less elementary) argument that refers to Mous-

song’s characterization of word–hyperbolicity for right angled Coxeter groups
(see Corollary 5.3 in the appendix). Consider the 120-cell P120, which is a
simple convex 4-dimensional polytope whose 3-dimensional faces are dodeca-
hedra. Realize P120 as a right-angled convex polytope in the hyperbolic space
H4, and consider the right–angled Coxeter group W generated by reflections
with respect to its 3-dimensional faces. Clearly, W is then word–hyperbolic.
Its nerve is the simplicial complex dual to the boundary complex ∂P120, and
thus it is isomorphic to X600. By the above mentioned Moussong’s charac-
terization, X600 is flag–no–square, and the lemma follows. �

Before constructing flag–no–square subdivisions in dimension 3, we recall
the analogous construction in dimension 2, due to Dranishnikov [5]. Let Z10

be the subcomplex of the boundary triangulation of icosahedron which is the
span of the vertices at distance at most 1 (in the 1–skeleton) from a fixed
2–dimensional simplex. Clearly, Z10 is topologically a 2-dimensional disc.
We will call true vertices of Z10 those vertices which belong to exactly two
different 2–dimensional simplices of Z10. There are three such vertices and
they lie on the boundary of Z10.

Definition 2.2. For a 2–simplex ∆ we will call the subdivision of ∆ iso-
morphic to Z10, where vertices of ∆ correspond to true vertices of Z10, the
special subdivision of ∆. We will denote it by ∆∗. For any 2-dimensional
simplicial complex Y , the special subdivision Y ∗ is obtained by taking the
first barycentric subdivision of the 1-skeleton of Y , followed by the special
subdivision of every 2-simplex of Y .

We recall from [5] the following.

Lemma 2.3. Let Y be a 2-dimensional simplicial complex. Then its special
subdivision Y ∗ satisfies flag–no–square property.

Now we turn to looking closely at the combinatorial ball around a 3–
simplex in X600. Its properties together with the flag–no-square property of
X600 are crucial for the later construction in this section. Fix a 3–dimensional
simplex ∆0 in X600. Consider the subcomplex

B1(∆0) = span{v ∈ X600 : dist(v, ∆0) ≤ 1}.

Denote by ∂B1(∆0) the subcomplex in B1(∆0) spanned by the vertices not
in ∆0.
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Lemma 2.4. Every simplex in ∂B1(∆0) is contained in a simplex intersecting
∆0.

Proof. If the simplex of ∂B1(∆0) is a vertex, the assertion is trivial. If the
simplex is an edge xy and x′, y′ are neighbours in ∆0 of x, y respectively, then
flag–no–square property of X600 implies, w.l.o.g., that xy′ is an edge, so xy
belongs to a triangle xyy′ intersecting ∆0.
Now if xyz is a triangle in ∂B1(∆0) then let x′, y′ denote vertices in ∆0

forming triangles zxx′, zyy′ guaranteed by the previous step. If x′ = y′ then
the assertion follows by flagness of X600. If not, consider the cycle xyy′x′x
and note that the flag–no–square condition yields, w.l.o.g., that xy′ is an
edge, so xyzy′ is a simplex.
Finally, we need to show that ∂B1(∆0) contains no 3–simplex. If not,

let x, y, z, t be vertices spanning a 3–simplex of ∂B1(∆0). Let u, w be the
vertices in ∆0 forming 3–simplices xyzu and yztw guaranteed by the previous
step. If u = w then flagness of X600 yields that xyztuw is a 4–simplex of
X600, a contradiction. If u 6= w, consider the cycle uwtxu and note that the
flag–no–square condition yields, w.l.o.g., that xw is an edge, so xyzuw is a
4–simplex of X600, which gives again a contradiction. �

The above lemma allows to describe both complexes B1(∆0) and ∂B1(∆0)
more precisely.

Lemma 2.5.

(1) B1(∆0) is topologically a 3-ball, and ∂B1(∆0) is its boundary sphere.

(2) ∂B1(∆0) is simplicially isomorphic to the special subdivision (∂σ3)∗ of
the boundary of a 3-simplex.

(3) Under the canonical identification of ∂B1(∆0) with (∂σ3)∗, if vertices
w1, w2 ∈ ∂B1(∆0) are contained in the same proper face τ of σ3, then there
is a vertex v0 ∈ ∆0 at distance 1 from both w1 and w2.

Proof. Denote the vertices of ∆0 by vi, i = 1, 2, 3, 4. First consider four
3–dimensional simplices ∆i, i = 1, 2, 3, 4 of X600, which have 2–dimensional
intersection with ∆0 (vi /∈ ∆0 ∩∆i). Denote by ai, i = 1, 2, 3, 4 the vertices
in corresponding ∆i not contained in ∆0, thus being vertices in ∂B1(∆0).
Now, consider twelve 3–dimensional simplices ∆ij, i, j = 1, 2, 3, 4, i 6= j,

such that ∆ij ∩ ∆0 is 1–dimensional, ∆ij ∩ ∆0 = ∆i ∩ ∆j, ∆ij ∩ ∆i is 2–
dimensional. In each ∆ij there is one edge disjoint with ∆0, whose one vertex
is ai and second is a common vertex with ∆ji. Denote this common vertex
by aij (i < j). So together, the union ∆0 ∪

⋃
∆i ∪

⋃
∆ij is homeomorphic to
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the 3-ball, and its intersection with ∂B1(∆0) is simplicially isomorphic to the
first barycentric subdivision of the 1–skeleton of the 3–dimensional simplex.
Finally, consider the rest of the 3–dimensional simplices of X600 having

non–empty intersection with ∆0, grouped into the following four complexes.
Let

Ci = {
⋃

∆ : ∆ is a 3–dimensional simplex of B1(∆0), ∆ ∩∆0 = vi},

i=1,2,3,4. Recall that the star of the vertex vi is the cone over icosahedron.
Observe that Ci consists of exactly half of 3–dimensional simplices of this
star. To see this, we check which simplices of this star do not belong to Ci.
First, Ci does not contain ∆0. It also does not contain any of ∆j, j 6= i, since
these have 2–dimensional intersection with ∆0. Finally, Ci does not contain
the simplices ∆kl, k, l 6= i, since they have 1–dimensional intersection with
∆0. It particular, the triangles corresponding to these 3–simplices in the link
of vi are the triangles which have a nonempty intersection with the triangle
corresponding to ∆0. Thus the intersection of Ci with the link of vi (which is
exactly the intersection with ∂B1(∆0)) is simplicially isomorphic with Z10. It
is glued to the previously constructed part of ∂B1(∆0) in such a way that true
vertices of the new part are glued to the vertices aj, j 6= i. This completes
the proof of part (2).
Part (1) follows by observing that each Ci is topologically a 3–ball, glued

to the previously constructed part of B1(∆0) (which is itself a 3–ball) along a
2–disk contained in the boundary ∂Ci. The direct inspection yields also that
the subcomplex ∂B1(∆0) is the boundary sphere of the so obtained 3–ball.
Part (3) easily follows from the above description of B1(∆0). �

In order to extend special subdivisions to dimension 3, we will use the
complement of the ball B1(∆0) in X600. More precisely, denote by X543 the
3–dimensional subcomplex of X600 which is the closure of X\B1(∆0). In
other words, X543 is the union of all 3–simplices of X600 not contained in
B1(∆0). (The number 543 in the subscript is the number of 3-simplices in
this subcomplex.)

Remark 2.6. It follows from Lemma 2.4 that X543 is a 3-ball and its bound-
ary sphere is simplicially isomorphic to (∂σ3)∗.

Lemma 2.7.

(1) X543 is a full subcomplex of X600.

(2) X543 satisfies flag–no–square property.

Proof. To prove (1), consider a collection of vertices in X543 spanning a
simplex τ of X600. If at least one of those vertices is interior in X543 then
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clearly τ is a simplex of X543. Otherwise, suppose that all simplices in the
collection belong to the boundary sphere ∂B1(∆0). Since, by definition, the
subcomplex ∂B1(∆0) is full in X600, the assertion (1) follows.
Since flag–no–square property is inherited by full subcomplexes (Lemma

5.1 in Appendix), assertion (2) follows from Lemma 2.1. �

Now we are ready to define special subdivision for 3-dimensional com-
plexes.

Definition 2.8. Given a simplicial complex W with dim W ≤ 3, its special
subdivision W ∗ is the simplicial complex obtained by taking the special sub-
division of the 2–skeleton W (2) followed by subdividing each 3–simplex σ3

of W so that it becomes isomorphic to X543 and its subdivided boundary
(∂σ3)∗ canonically identifies with ∂B1(∆0).

To prove that special subdivision yields simplicial complexes that satisfy
flag–no–square property, we need some preparatory results.

Lemma 2.9. Let ∆ be a simplex of dimension 1, 2 or 3, and let xy be an
edge of the special subdivision ∆∗. If the vertices x, y are not both contained
in a common proper face of ∆, then at least one of them lies in the interior
of ∆.

Proof. For dimension 1 and 2 the proof goes by inspection. For dimension
3, suppose that both x and y are contained in the boundary of ∆. Identify
∆∗ with X543 ⊂ X600, and recall that its boundary ∂B1(∆0) is by definition
full in X600. Thus the edge xy is contained in the boundary too. Let τ be a
proper face of ∆ containing the edge xy. Then both x and y are contained
in τ , a contradiction. �

Lemma 2.10. Let W be a simplicial complex with dim W ≤ 3 and let U be
a subcomplex of W . Then U∗ is a full subcomplex of W ∗.

Proof. Let vertices x, y ∈ U∗ form an edge xy ofW ∗. Denote by ∆ ∈ W the
simplex of the lowest possible dimension such that xy ∈ ∆∗. By Lemma 2.9,
at least one of the vertices, say y, belongs to the interior of ∆. This implies
that ∆ ∈ U and xy ∈ ∆∗ ⊂ U∗.
For a triangle or a 3–simplex σ of W ∗ with vertices in U∗ the argument

is the same. If ∆ is a minimal simplex of W such that σ ⊂ ∆, then at
least one of the vertices y of σ belongs to the interior of ∆, so ∆ ∈ U and
σ ∈ ∆∗ ⊂ U∗. �
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Lemma 2.11. Let ∆ be a 3–dimensional simplex. Let w,w1, w2 be vertices
of ∆∗ and suppose w is interior in ∆ and w1, w2 ∈ ∂∆∗. Suppose also that
w1, w2 lie on the same 2–dimensional face of ∆, and that there are edges in
∆∗ between w and w1 and between w and w2. Then there is an edge between
w1 and w2 in ∆∗.

Proof. View ∆∗ as X543, a subcomplex of X600. By Lemma 2.5(3), there is
a vertex v0 in ∆0 whose distance from both w1 and w2 is equal to one. If w1

and w2 were not connected by an edge, then the opposite vertices of the cycle
w1v0w2ww1 wouldn’t be connected with edges, contradicting flag–no–square
property of X600. �

Lemma 2.12. Let ∆ be a 3–simplex and τ a simplex of dimension ≤ 3 such
that ∆ ∩ τ is a nonempty proper face in both ∆ and τ . Then the special
subdivision Y = (∆ ∪ τ)∗ satisfies flag–no–square property.

Proof. To prove flagness, consider any collection of vertices in Y pairwise
connected with edges. We claim all these vertices belong to a single subdi-
vided simplex ∆∗ or τ ∗. Indeed, if one of the vertices, say v, is not in the
intersection ∆ ∩ τ then all vertices in the collection belong to the same sub-
divided simplex as v. Otherwise, all vertices in the collection are contained
in both simplices ∆ and τ . Now, since each of the subdivided simplices ∆∗

and τ ∗ is full in Y and flag, the vertices from the collection span a simplex
of Y .
To prove flag–no–square property, suppose we have a cycle of length four

in Y . If the cycle is contained in ∆∗ or in τ ∗, then we use the flag–no–square
property of X543 (Lemma 2.7(2)), or Lemma 2.3. Otherwise, suppose that
a vertex x of the cycle does not belong to ∆∗, and that a vertex y does not
belong to τ ∗. This means, that x and y are opposite in the cycle and that
the other two vertices, u and w, of the cycle belong to ∆ ∩ τ . By Lemma
2.11, u and w are connected with an edge, which finishes the proof. �

We are now ready to prove the main result of this section, the proposition
below.

Proposition 2.13. Let W be a 3–dimensional simplicial complex. Then its
special subdivision W ∗ is flag–no–square.

Proof. To prove flagness, consider a collection of vertices of W ∗ pairwise
connected with edges. If all these vertices are in (W (2))∗, the special subdi-
vision of the 2-skeleton of W , then they are pairwise connected with edges
in (W (2))∗ by the fact that (W (2))∗ is full in W∗ (Lemma 2.10). They span
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a simplex by the fact that (W (2))∗ is flag (Lemma 2.3). Otherwise, there is
a vertex in the collection contained in the interior of a 3-simplex ∆ of W .
Consequently, all vertices in the collection are the vertices of ∆∗. Now, since
∆∗ is full in W ∗ (Lemma 2.10), the vertices in the collection are pairwise
connected with edges in ∆∗. Since the latter is flag (Lemma 2.7(2)), the
vertices span a simplex of ∆∗, which is also a simplex of W ∗.
To prove flag–no–square property, consider a cycle of length 4 in W ∗. If

all vertices of the cycle are in (W (2))∗ then, by Lemma 2.10, the whole cycle
is contained in (W (2))∗. Since the latter is flag–no–square (Lemma 2.3), there
is an edge between some opposite vertices is the cycle.
If one vertex, say v1, in the cycle v1v2v3v4v1 in W ∗ is interior in a 3-

simplex ∆ of W , then v2 and v4 are together with v1 in ∆∗. If v3 is also
in ∆∗, the whole cycle is in ∆∗ (by fullness of ∆∗ in W ∗, see Lemma 2.10).
Since ∆∗ is flag–no–square, the cycle is as required. If v3 is not contained in
∆, it belongs to some simplex τ which is not a face of but shares a face with
∆. Moreover, the whole cycle is contained in the union ∆ ∪ τ (Lemma 2.10
again). Since the special subdivision of the latter is flag–no–square (Lemma
2.12), this finishes the proof. �

Corollary 2.14. Every 3–dimensional polyhedron can be triangulated in
a flag-no-square fashion.

Proof. Consider any triangulation of the polyhedron and take its special
subdivision. �

3 Trees of manifolds

In this section we recall from [10] Jakobsche’s definition of a family of spaces
that we call (after Fischer and Guilbault [8]) trees of manifolds. We in-
clude an extension to the case of nonorientable manifolds due to P. Stallings
[19]. We recall and/or derive some useful topological properties of these
spaces. We also recall a theorem of Fischer [7] who proved that some trees of
manifolds are CAT(0) boundaries of the Davis–Vinberg complexes of certain
right–angled Coxeter groups. We focus only on trees of manifolds, which
appear in Fischer’s theorem.

Theorem 3.1 (Jakobsche [10], [7], Stallings [19]). Let L0
α1← L1

α2← L2
α3← . . .

be an inverse sequence of connected closed n–manifolds (n ≥ 2) and Dk finite
collections of disjoint collared disks in Lk such that

(a) each Lk is a connected sum of finitely many copies of L0;
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(b) each αk+1 is a homeomorphism over the set Lk\
⋃
{int D|D ∈ Dk};

(c) each α−1
k+1(D) (D ∈ Dk) is homeomorphic to a copy of L0 with the interior

of a collared disk removed;

(d) {αj+1 ◦αj+2 ◦ . . . ◦αi(D)|D ∈ Di, i ≥ j} is null and dense in Lj for all j;

(e) αj+1 ◦ αj+2 ◦ . . . ◦ αi(D) ∩ bdyD′ = ∅ for all D ∈ Di, D
′ ∈ Dj, i > j.

Then the inverse limit

lim
←

(L0
α1← L1

α2← L2
α3← . . .)

depends on L0 only. This space is denoted by X(L0, {L0}).

The spaces X(L0, {L0}) are clearly connected and locally connected com-
pact metric spaces. Jakobsche and Stallings show in [11], [10] and [19] the
following less immediate properties of these spaces. Recall that, given a
positive integer m, a topological space X is m–homogeneous if for any two
m–element subsets of X there is a homeomorphism of this space which maps
one set to the other.

Theorem 3.2 (W. Jakobsche, P. Stallings).

(1) Topological dimension dim X(L0, {L0}) is equal to dim L0.

(2) For every positive integer m the space X(L0, {L0}) is m–homogeneous.

(3) If L0 is a homology n–sphere then X(L0, {L0}) is a cohomology n–
manifold.

The above properties of trees of manifolds have the following further
consequences, especially interesting in the context of boundaries of word–
hyperbolic groups. Recall that a topological space X is a Cantor manifold if
no subset of X of dimension ≤ dim X − 2 separates X.

Corollary 3.3. The spaces X(L0, {L0})
(1) have no local cut points, and

(2) are Cantor manifolds.

Proof. Let X = X(L0, {L0}). By homogeneity, either X has no local cut
point or every point of X is a local cut point. Suppose the latter holds.
Since in any continuum the set of local cut points which are not of order 2 is
countable ([20], (9.2), p. 61), it follows that each point of X is of order 2, and
hence it is homeomorphic to S1 ([16], Theorem 6, p. 294). This contradiction
proves (1).
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Since any homogeneous continuum is a Cantor manifold [15], (2) follows
from Theorem 3.2(2). �

It turns out that sometimes the spaces X(L0, {L0}) are homeomorphic
for different manifolds L0. On the other hand, Jakobsche [10] shows how to
distinguish certain trees of manifolds, up to homeomorphism, in dimension
3. We recall briefly some details concerning these two issues. We denote by
M#N the connected sum of manifolds M and N .

Lemma 3.4. If M ′ = M#N and M = L#N then the spaces X(M ′, {M ′})
and X(M, {M}) are homeomorphic.

Proof. Both spaces are easily seen to be homeomorphic to the Jakobsche’s
space X(L, {L, N}) (see [10] for the definition). �

In dimension 2, in view of the classification of surfaces, Lemma 3.4 implies
the following.

Corollary 3.5. Let F1, F2 be closed surfaces different from the 2–sphere. If
either both F1, F2 are orientable or both are non–orientable, then the spaces
X(F1, {F1}) and X(F2, {F2}) are homeomorphic.

Remark 3.6. Note that if F is an orientable closed surface then the space
X(F, {F}) is the well known Pontriagin sphere. If F is a non–orientable
closed surface then X(F, {F}) is the Pontriagin surface Π2 mentioned in the
introduction (see [21]). Pontriagin sphere is not homeomorphic to any of
the Pontriagin surfaces Πp, as its cohomological dimension for coefficients Q
equals 2.

In the case of 3–manifolds, Lemma 3.4 and the argument as in the proof
of Theorem 11.1 in [10] imply the following.

Proposition 3.7.

(1) If L0, L
′
0 are closed 3–manifolds different from the sphere, and the sum-

mands appearing in their prime decompositions coincide (the numbers of
their occurences do not have to match) then the spaces X(L0, {L0}) and
X(L′0, {L′0}) are homeomorphic.
(2) Let L0, L

′
0 be closed orientable 3–manifolds. Suppose that, in their prime

decompositions, certain summand of L0 has different fundamental group from
all summands of L′0. Then the spaces X(L0, {L0}) and X(L′0, {L′0}) are not
homeomorphic.

Now let us state the announced theorem of Fischer. For the definition of
the Davis-Vinberg complex of a Coxeter group see [3]. By bdy(Γ) we denote
the CAT(0) boundary of the Davis–Vinberg complex of the group Γ.
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Theorem 3.8 (Fischer [7]). If the nerve N of a right–angled Coxeter group
Γ is a connected closed (orientable or not) PL manifold, then bdy(Γ) is
homeomorphic to Jakobsche’s X(|N |, {|N |}) space.

4 The main theorem

In this section we formulate and prove the main result of the paper, Theorem
4.1. We make comment on the algebraic consequences for groups appearing
in Theorem 4.1, implied by topological properties of 3–dimensional trees of
manifolds. Finally, we show the consequences of the arguments similar to
ours for dimensions different than 3.

Recall that all 3-manifolds are triangulable, all their triangulations are
PL, and any two triangulations of a fixed 3-manifold are PL equivalent [17].

Theorem 4.1. Let N be a connected closed 3–dimensional manifold. Then
there exists a right–angled Coxeter group Γ which is word–hyperbolic and its
Gromov boundary is homeomorphic to Jakobsche’s X(N, {N}) space.

Proof. Take any PL triangulation of N . Let N∗ be its special subdivi-
sion, as defined in Section 2. Since N∗ is flag–no–square (Proposition 2.13),
the right angled Coxeter group Γ whose nerve is N∗ is word–hyperbolic
(Lemma 5.3 in the appendix). The Gromov boundary of Γ is homeomor-
phic to the CAT(0) boundary of the Davis–Vinberg complex of Γ. Thus, due
to Fischer’s Theorem 3.8, the Gromov boundary of Γ is homeomorphic to
Jakobsche’s X(N, {N}) space. �

Remark 4.2. Since the space X(N, {N}) is connected and has no local cut
point (Lemma 3.3(1)), it follows from a result of Bowditch [1] that Γ as in
Theorem 4.1 is JSJ-indecomposable (i.e. it does not split as amalgamated
free product or HNN extension over a finite or 2–ended subgroup). Moreover,
since X(N, {N}) is a Cantor manifold of topological dimension 3 (Lemma
3.3(2) and Theorem 3.2(1)), it is not separated by a Cantor set or a circle.
Consequently, the corresponding group Γ does not split over an undistorted
virtually free or virtually surface subgroup.

The argument as in the proof of Theorem 4.1 clearly gives the following.

Corollary 4.3. If N is a connected closed manifold (of arbitrary dimension
greater than 1) which admits a flag–no–square PL triangulation then the
space X(N, {N}) is homeomorphic to Gromov boundary of a word-hyperbolic
right-angled Coxeter group.
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Remark 4.4.

(1) The above corollary, together with Dranishnikov’s Lemma 2.3, show that
there are word–hyperbolic groups whose boundaries are homeomorphic to
the Pontriagin sphere.

(2) In dimension 4 the only known to us examples of manifolds N as in
Corollary 4.3 are the following. Consider the regular simplicial tesselation
of the hyperbolic space H4 with all vertex links isomorphic to X600 – the
boundary complex of the 600–cell. It is not hard to show (using Lemma 2.1)
that this tesselation is flag–no–square. The automorphism group G of this
tesselation is a Coxeter group, hence it is residually finite. In particular, G
contains torsion–free subgroups G′ for which the quotients have arbitrarily
large injectivity radius. If the injectivity radius is large enough, the quotient
(viewed as a simplicial manifold) is flag–no–square. It is PL regardless the
injectivity radius.

(3) It follows from a result of Januszkiewicz and Świa̧tkowski [12] (see also
Corollary 5.7(2) in the appendix) that no closed manifold of dimension ≥ 5
admits a flag–no–square triangulation. Thus Corollary 4.3 gives no trees of
manifolds in dimensions above 4 as Gromov boundaries of word-hyperbolic
groups.

5 Appendix: Flag-no-square triangulations

The aim of this appendix is to survey the subject of flag-no-square triangu-
lations, and to formulate some open questions. All we know about this we
have learnt from or discovered together with Tadeusz Januszkiewicz.

For completeness, we start with definitions.

A simplicial complex X is flag if any finite subset of its vertices pairwise
connected with edges spans a simplex X.
A cycle in X is a subcomplex homeomorphic to the circle S1. The length

of a cycle is the number of edges in this cycle. A diagonal in a cycle is an
edge connecting any two non-consecutive vertices in this cycle.
Simplicial complex X is said to satisfy flag–no–square condition if X is

flag and any cycle of length 4 in X has a diagonal (equivalently, there is no
full cycle of length 4 in X). We shortly say that X is flag–no–square. The
same condition is also known as ”no empty square” condition.

The following two properties of flag–no–square condition are immediate
but useful consequences of the definition. The second property follows from
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the first by the fact that links in a flag simplicial complex are its full sub-
complexes.

Lemma 5.1. Let X be a flag–no–square simplicial complex. Then:

(1) any full subcomplex of X is flag-no-square;

(2) links of X are flag–no–square.

Flag–no–square condition was introduced and studied in the context of
cubical structures on 3-manifolds by L. Siebenmann. Its importance for
the geometry of cubical complexes comes from the following observation by
Gromov ([9], p. 123).

Proposition 5.2. Let X be a cubical complex with flag–no–square links.
Then X admits a negatively curved piecewise hyperbolic metric. In particular,
the fundamental group of X is word–hyperbolic.

This proposition implies in particular the following (see [18] or [4]).

Corollary 5.3. A right–angled Coxeter group is word–hyperbolic iff its nerve
is a flag–no–square simplicial complex.

In [13] flag–no–square condition has been reintroduced under the name 5–
largeness, and put in the wider context of combinatorial ”metric” conditions
for simplicial complexes. In this approach, we say that a simplicial complex
X is k–large (for an integer k ≥ 4) if X is flag and any cycle γ in X, with
length |γ| satisfying 3 < |γ| < k, has a diagonal (equivalently, any full cycle
in X has length ≥ k).
It turns out that 6–largeness of links (called shortly local 6–largeness) is a

condition that resembles nonpositive curvature, sharing many consequences
with the latter. For example, any compact locally 6–large simplicial complex
is aspherical and its fundamental group is semi–hyperbolic. Furthermore,
the fundamental group of any compact locally 7–large simplicial complex is
word–hyperbolic.
Local 5–largeness is a weaker condition and does not lead to phenomena

related to nonpositive curvature. For example, boundaries of the dodecahe-
dron and the 600–cell are 5–large (and thus also locally 5–large) triangula-
tions of the spheres S2 and S3. However, this condition may be still viewed
as a kind of upper curvature bound. There are reasons to expect topological
consequences of local 5–largeness similar to those of nonpositive curvature,
in higher dimensions.

In the remaining part of this appendix we will use the term ”5–large”
instead of ”flag–no–square”.
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In low dimensions there are no topological restrictions for 5–largeness.
Namely, the following fact was observed by Dranishnikov [5].

Proposition 5.4. Any 2–dimensional polyhedron admits a 5–large triangu-
lation.

In this paper we have strengthened this result by showing

Proposition 5.5. Any polyhedron of dimension ≤ 3 admits a 5–large trian-
gulation.

Starting from dimension 4, there are topological obstructions for 5–large-
ness. They concern, among others, the so called generalized homology spheres
(GHS).
A simplicial complex N is a generalized homology sphere of dimension k

if it has the same homology as the sphere Sk and if the link of each simplex
in N is a generalized homology sphere of appropriate dimension. Along the
lines of Section 2.2 in [12] the following result is proved.

Theorem 5.6. A generalized homology sphere of dimension k ≥ 4 is never
5–large.

Recall that links of PL–triangulations of manifolds are spheres. Links of
other triangulations of manifolds may not be spheres, but they are generalized
homology spheres. In particular, all triangulations of spheres and homology
spheres are GHS. Moreover, links in any triangulation of a manifold are GHS.
In view of these facts Theorem 5.6 has the following consequences.

Corollary 5.7.

(1) No triangulation of a 4–dimensional homology sphere is 5–large. In par-
ticular, no triangulation of the sphere S4 is 5–large.

(2) No triangulation of a manifold of dimension n ≥ 5 is 5–large.

In contrast with the above result, constructions in [12] and [13] give many
examples of compact 5–large pseudomanifolds, in arbitrary dimension. In
fact, the examples constructed there are 6–large, and thus aspherical. When
applied to cubical structure of the Davis’ complex of a right angled Coxeter
group, those examples yield word-hyperbolic Coxeter groups with arbitrarily
large virtual cohomological dimension [12].
Coming back to manifolds, the only known to us examples of closed sim-

plicial flag–no–square 4-manifolds are those described in Remark 4.4(2) in
this paper.

We finish by posing some open problems which we find intriguing in the
perspective of viewing local 5–largeness as certain upper curvature bound.
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Questions 5.8.

(1) Is every 5–large (or locally 5–large) 4–dimensional simplicial manifold
aspherical?

(2) Is every 5–large (or locally 5–large) n–dimensional simplicial pseudoman-
ifold, for n ≥ 4, aspherical?

(3) Find any restrictions for polyhedra in dimensions ≥ 4 to admit 5–large
or locally 5–large triangulation.
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