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ABSTRACT

We introduce a family of conditions on a simplicial complex that we call local k-largeness (k ≥ 6 is an integer).
They are simply stated, combinatorial and easily checkable. One of our themes is that local 6-largeness is a good analogue
of the non-positive curvature: locally 6-large spaces have many properties similar to non-positively curved ones. However,
local 6-largeness neither implies nor is implied by non-positive curvature of the standard metric. One can think of these
results as a higher dimensional version of small cancellation theory. On the other hand, we show that k-largeness implies
non-positive curvature if k is sufficiently large. We also show that locally k-large spaces exist in every dimension. We use
this to answer questions raised by D. Burago, M. Gromov and I. Leary.

Introduction

Spaces of non-positive curvature have been intensively investigated over the
past 50 years. More recently non-riemannian metric spaces, for which non-positive
or negative curvature is defined by comparison inequalities, the so-called CAT(0)

or CAT(−1) spaces, have been studied, mainly in geometric group theory [BH].
Many CAT(0) spaces are obtained by combinatorial constructions. These

constitute a significant part of small cancellation theory [LS], which deals mostly
with 2-dimensional complexes. Cubical complexes are the main source of high di-
mensional CAT(0) spaces. The crucial observation which permits their study is
Gromov’s lemma: a cubical complex with its standard piecewise euclidean metric
is CAT(0) if and only if the links of its vertices are flag simplicial complexes. The
flag property is an easily checkable, purely combinatorial condition.

It is natural to ask if something similar holds for simplicial complexes:

(1) can one formulate the CAT(0) property of the standard piecewise eu-
clidean metric on a simplicial complex in combinatorial terms;

(2) is there a simple combinatorial condition implying CAT(0);
(3) is there a simple condition implying Gromov hyperbolicity.

We do not answer the first question but we provide a satisfactory answers to
the other two. Namely, in Section 1 we introduce the notion of a locally k-large
simplicial complex, where k ≥ 4 is an integer. It is defined in terms of links in the
complex by very simple combinatorial means. We show in Sections 15 and 16 that,
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for every n, there is an explicit constant k(n) such that if Xn is a locally k(n)-
large, n-dimensional simplicial complex, then its standard piecewise euclidean metric
is CAT(0). Taking a slightly bigger constant k(n) we conclude that Xn admits
a CAT(−1) metric. We also show (Section 2) that the universal covers of locally
7-large complexes are Gromov hyperbolic. These facts are well known in dimen-
sion 2, where our definition of locally 6- and 7-large coincides with the CAT(0)

and, respectively the CAT(−1) property of the standard piecewise constant-curva-
ture metrics.

We claim that “locally 6-large” is the right simplicial analogue of non-positive
curvature. This condition neither implies nor is implied by the CAT(0) property
of the standard metric, but shares many of its consequences. We describe some
of them later in this introduction. The results are proved using combinatorial (but
metrically inspired) concepts. This is very much in the spirit of small cancellation
theory. The novelty is that our approach works in any dimension.

Let us point out that the flag condition from Gromov’s lemma is equivalent
to the “4-large” property. Also, Siebenmann’s “flag-no-square” condition appearing
in the study of CAT(−1) property of cubical complexes is equivalent to “5-large”.

Finer properties of high dimensional locally 6-large simplicial complexes seem
to be fairly different from the properties one sees when studying non-positively
curved manifolds. Manifolds of dimension greater than 2 do not admit locally
6-large triangulations. As we show in [ JS2], the fundamental groups of many
aspherical manifolds cannot be embedded into the fundamental groups of locally
6-large complexes. Still, high dimensional locally 6-large spaces abound. We con-
struct a great many very symmetric examples by developing certain simplices of
groups. In particular, we can obtain in this way compact orientable locally 6-large
pseudomanifolds of any dimension.

We now briefly describe the contents of the paper, which naturally splits into
five parts.

In the first part (Sections 1 and 2) we introduce the concepts of a locally
k-large simplicial complex, a k-systolic simplicial complex, and a k-systolic group.
Here we briefly recall these concepts (see also the remark after Lemma 1.3). Given
an integer k ≥ 4, a simplicial complex is locally k-large if every cycle consisting of
less than k edges in any of its links has some two consecutive edges contained in
a 2-simplex of this link. A simplicial complex is k-systolic if it is locally k-large,
connected and simply connected. A group is k-systolic if it acts simplicially, properly
discontinously and cocompactly on a k-systolic complex. A simplicial complex (or
a group) is systolic if it is 6-systolic.

In Section 1 we give a useful criterion for k-largeness (k ≥ 6) in terms of
links and lengths of homotopically nontrivial loops (Corollary 1.5). This is done
with a simplification argument on simplicial disc diagrams reminiscent of small
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cancellation theory arguments. Similar reasoning allows us to establish in Section 2
the following result.

Theorem A (See Theorem 2.1 and Corollary 2.2 in the text).

(1) Let X be a 7-systolic simplicial complex. Then the 1-skeleton X(1) of X with its

standard geodesic metric is hyperbolic in the sense of Gromov.

(2) Any 7-systolic group is word-hyperbolic.

The main idea exploited in the second part of the paper (Sections 3–6) is
that of local convexity. We introduce it in Section 3 under the name of local
3-convexity. It allows us to define “small extensions” (Sections 4 and 5). These
may be viewed as an analogue of the exponential map with a built-in divergence
property for trajectories. Using small extensions we show the following three results.

Theorem B (See Theorem 4.1.1 in the text). — The universal cover of a finite di-

mensional connected locally 6-large simplicial complex is contractible. In particular, any finite

dimensional systolic simplicial complex is contractible.

This is an analogue of the classical Cartan–Hadamard theorem.

Theorem C (See Theorem 4.1.2 in the text). — Let f : Q → X be a locally

3-convex map of a connected simplicial complex Q to a finite dimensional connected locally 6-

large simplicial complex X. Then the induced homomorphism f∗ : π1Q → π1X of fundamental

groups is injective.

Note that Theorem C applies to the inclusion maps of locally 3-convex sub-
complexes Q ⊂ X. The analogous statement in riemannian geometry asserts that
the fundamental group of a locally geodesically convex subset in a complete non-
positively curved manifold injects into the fundamental group of the ambient space
(this is also true for locally CAT(0) geodesic metric spaces).

Theorem D (See Theorem 6.1 in the text). — Every connected locally 6-large simplicial

complex of groups is developable.

Theorem D will be crucial for the constructions in the last part of the paper.
It is analogous to the classical result asserting that non-positively curved complexes
of groups are developable.

The results in part three of the paper (Sections 7–13) are based on a certain
convexity property of balls in systolic complexes, described in Section 7 (Corol-
lary 7.9). The main result in this part is the following.
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Theorem E (See Theorem 13.1 in the text). — Let G be a systolic group, i.e. a group

acting simplicially, properly discontinuously and cocompactly on a systolic simplicial complex.

Then G is biautomatic.

Many corollaries of Theorem E can be obtained by using the well-developed
theory of biautomatic groups [ECHLPT]. In particular, systolic groups satisfy
quadratic isoperimetric inequalities, their abelian subgroups are undistorted, their
solvable subgroups are virtually abelian, etc.

Theorem E is the culmination of a series of results concerning systolic com-
plexes, which have independent interest. For example, in Section 8 we define
a simplicial analogue of the projection map onto a convex subset. We also show
that this map does not increase distances (Fact 8.2). In Section 9 we introduce
the concept of directed geodesics and show their existence and uniqueness (Corol-
lary 9.7). Finally, we establish in Sections 11–12 the two-sided fellow traveller prop-
erty for directed geodesics, the main ingredient in the proof of Theorem E.

To prove Theorem E one needs, besides properties of directed geodesics,
an argument which enables the passage from the space on which the group acts
to the group itself, especially in the case where the group action has nontrivial
stabilizers. The argument we use in this paper has been expanded and applied in
other situations by the second author [S].

Part four of the paper (Sections 14–16) addresses the relationship between
the k-systolic and CAT(κ) properties. We have

Theorem F (See Theorem 14.1 in the text). — Let Π be a finite set of isometry

classes of metric simplices of constant curvature 1, 0 or −1. Then there is an integer k ≥ 6,

depending only on Π, such that:

(1) if X is a piecewise spherical k-large complex with Shapes(X) ⊂ Π then X is

CAT(1);

(2) if X is piecewise euclidean (respectively, piecewise hyperbolic), locally k-large and

Shapes(X) ⊂ Π then X is non-positively curved (respectively, has curvature

κ ≤ −1);

(3) if, in addition to the assumptions of (2), X is simply connected, then it is CAT(0)

(respectively, CAT(−1)).

We offer two proofs of Theorem F. The first one (in Section 14) covers
the general case, but the estimates for the systolic constants are not explicit. The
second one (Section 15) yields potentially explicit constants, but covers only metrics
for which the simplices have all angles acute. In Section 16 we work out explicit
estimates for the standard piecewise euclidean metric (based on the second proof ),
and obtain the following.
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Theorem G (See Theorem 16.1 in the text). — Let k be an integer such that

k ≥ 7π
√

2
2

· n + 2.

Then any k-systolic simplicial complex X with dim X ≤ n is CAT(0) with respect to the

standard piecewise euclidean metric.

The last part of the paper (Sections 17–20) deals with constructions of k-large
complexes of high dimensions. The complexes we obtain arise as developments
of appropriate simplices of groups. The constructions are based on the second
important idea of the paper, the notion of extra-tilability of simplices of groups
(Section 18). Extra-tilability matches with local convexity of balls in systolic spaces
in an interesting way, and allows us to construct subgroups with large fundamen-
tal domains. As a consequence, we obtain large compact quotients of universal
covers of simplices of groups, which in turn allows us to use induction in the
constructions.

The key result in this part is Theorem H below. The technical notions oc-
curring in its statement, which are standard in the theory of complexes of groups,
are recalled in Section 17.

Theorem H (See Proposition 19.1 in the text). — Let ∆ be a simplex and suppose that

for any codimension-1 face s of ∆ we are given a finite group As. Then for any k ≥ 6 there

exists a simplex of finite groups G = ({Gσ}, {ψστ}) and a locally injective and surjective morph-

ism m : G → F to a finite group F such that G∆ = {1}, Gs = As for any codimension-1

face s of ∆, and the development D(G , m) associated with the morphism m is a ( finite and)

k-large simplicial complex.

As an application of Theorems F and H we obtain the following.

Theorem J (See Corollary 19.3.2,3 in the text).

(i) For each natural number n there exists an n-dimensional compact simplicial orientable

pseudomanifold whose universal cover is CAT(0) with respect to the standard piece-

wise euclidean metric.

(ii) For each natural number n and each real number d > 0 there exists an n-dimensional

compact simplicial orientable pseudomanifold whose universal cover is CAT(−1) with

respect to the piecewise hyperbolic metric for which the simplices are regular hyperbolic

with edge lengths d .

Theorem J answers a question of D. Burago and collaborators [Bu,BuFKK],
motivated by their investigations of billiards. The result can be extended from
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simplices to more general domains. We present the exposition of this more general
result in [ JS3].

As a step in the proof of Theorem J one gets the existence of k-large com-
pact orientable pseudomanifolds of arbitrary dimension n, for any k ≥ 6. It is
interesting to compare this with our earlier paper [ JS1], where we establish the
existence of hyperbolic Coxeter groups of arbitrary virtual cohomological dimen-
sion. The existence of such (right-angled) groups is reduced in [ JS1] to the exis-
tence in arbitrary dimension of compact orientable pseudomanifolds which satisfy
the flag-no-square condition (they occur as nerves of the corresponding right-angled
Coxeter groups). Since the flag-no-square condition is equivalent to 5-largeness, we
obtain in the present paper compact orientable pseudomanifolds which satisfy even
stronger conditions, with a significantly different construction than that in [ JS1].

The result from [ JS1] mentioned above can also be compared with another
result from the present paper, Theorem K, which can be deduced from The-
orem H.

Theorem K (See Corollary 19.3.1 in the text). — For each natural number n there

exists a developable simplex of groups whose fundamental group is Gromov-hyperbolic, virtually

torsion-free, and has virtual cohomological dimension n.

A less immediate consequence of Theorem H, below, answers a question of
M. Gromov. Normal simplicial pseudomanifolds occurring in the statement of this
result form a natural class containing, among others, all triangulations of manifolds.
By a branched covering we mean a simplicial map which is a covering outside
the codimension-2 skeleton.

Theorem L (See Theorem 20.1 in the text). — Let X be a compact connected normal

simplicial pseudomanifold equipped with a piecewise euclidean (respectively, piecewise hyperbolic)

metric. Then X has a compact branched covering Y which is non-positively curved (respectively,

has curvature κ ≤ −1) with respect to the induced piecewise constant curvature metric.

We apply the same methods to answer a question of Ian Leary concerning
homotopy types of classifying spaces for proper G-bundles of Gromov hyperbolic
groups G (see [QGGT, Question 1.24]). We refer to [LN] for the background on
the following result.

Theorem M (See Corollary 20.4 in the text). — Any finite complex K is homo-

topy equivalent to the classifying space for proper G-bundles of a CAT(−1) (hence Gromov

hyperbolic) group G.

We started to work on the present paper in 2000. The initial aim was
to construct hyperbolic Coxeter groups of arbitrarily large virtual cohomological
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dimension via 5-large pseudomanifolds. After proving first few results on 6-large
spaces, we found a shortcut – retractible and extra retractible complexes of groups
– which we eventually used in [ JS1]. Our further study of the subject was motiv-
ated by the question of D. Burago et al. on existence of simplicial pseudomani-
folds whose standard piecewise flat metrics are nonpositively curved. This led us
to the question about the relationship between the k-large and CAT(κ) condi-
tions.

Since 2002 we gave several lectures on the subject (at the conferences in
Luminy in 2002, in Durham in 2003, and in several other places). At the Luminy
conference, M. Gromov asked the question about ramified covers (see Theorem L),
and gave us significant moral support with the rest of the project. In the Spring
of 2003 one of us had first discussions with Dani Wise which were very useful.
We did not circulate a preprint, and in late 2003, we have learned that Fred-
eric Haglund has independently obtained some of our results (roughly, those in
Sections 1–8 and 17–19). Part of his work is described in [H].

We are grateful to Misha Gromov, Dani Wise and many other colleagues for
useful feedback. We would like to thank the referee for careful reading the first
version of the paper and to Carrie Schermetzler who pointed out several annoying
mistakes.

The first author thanks Max-Planck-Institut für Mathematik for its hospitality
in the summer of 2003. We thank the Ohio State University Research Foundation
for partial support of the visit of the second author to OSU, during which we
completed the paper.

1. k-large and k-systolic simplicial complexes

In this section we define and study first properties and examples of k-large
and k-systolic simplicial complexes.

We allow that simplicial complexes are not locally finite. In Sections 1–3,
if not explicitly assumed otherwise, we also allow that they are not finite dimen-
sional, i.e. may contain simplices of arbitrarily large finite dimension. (We call
such complexes infinite dimensional.) Starting from Section 4, we assume that sim-
plicial complexes are finite dimensional. It is possible that some of the results in
Sections 4–12 extend to infinite dimensional case, but this would require arguments
different from ours.

If a simplicial complex is finite dimensional, its topology is induced by the
standard piecewise euclidean metric.

We express topological properties of infinite dimensional simplicial complexes
in terms of their appropriate finite dimensional skeleta.
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We are most interested in simplicial complexes equipped with proper dis-
continuous and cocompact group actions by simplicial automorphisms. Those are
finite dimensional and locally finite.

Let X be a simplicial complex, and σ a simplex in X. The link of X at σ ,
denoted Xσ , is a subcomplex of X consisting of all simplices that are disjoint
from σ and which together with σ span a simplex of X. The residue of σ in
X, Res(σ, X), is the union of all simplices of X that contain σ . It is also called
the (closed) star of σ . The residue Res(σ, X) is naturally the join of σ and the
link Xσ .

A subcomplex K in X is called full (in X) if any simplex of X spanned by
a set of vertices in K is a simplex of K. If K is full in X, then Kσ is full in Xσ

for any simplex σ in K. A similar property holds also for residues.
A simplicial complex X is flag if any finite set of vertices, which are pairwise

connected by edges of X, spans a simplex of X. Clearly, a full subcomplex in
a flag complex is flag. Note also that X is flag if and only if for any simplex σ

the link Xσ is full in X. Flag simplicial complexes arise naturally in the study of
CAT(0) property of cubical complexes [Gr-HG,BH].

A cycle in a simplicial complex X is a subcomplex γ of X isomorphic to
a triangulation of S1. Denote by |γ | the length of γ , i.e. the number of 1-simplices
in γ . A full cycle in X is a cycle that is full as subcomplex of X. Define the systole

of X to be

sys(X) = min{|γ | : γ is a full cycle in X}.

In particular, we have sys(X) ≥ 3 for any simplicial complex X, and if there is no
full cycle in X, sys(X) = ∞. This definition is somewhat reminiscent of the notion
of systole in riemannian geometry, hence the name.

1.1. Definition. — Given a natural number k ≥ 4, a simplicial complex X is

– k-large if sys(X) ≥ k and sys(Xσ) ≥ k for each simplex σ of X;

– locally k-large if the residue of every simplex of X is k-large;

– k-systolic if it is connected, simply connected and locally k-large.

(Here we use convention that an infinite dimensional simplicial complex is connected when its

1-skeleton is connected, and it is simply connected when its 2-skeleton is simply connected. To

be consistent with the latter, by the universal cover of an infinite dimensional flag complex we

mean the flag completion of the universal cover of its 2-skeleton.)

A group acting properly discontinously and cocompactly, by automorphisms,
on a k-systolic simplicial complex, is called a k-systolic group.
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A 6-systolic complex or a group is called systolic. 6-systolic complexes and
groups are the main objects of study in this paper. Since the word “six-systolic”
is somewhat hard to pronounce, we abbreviate it to “systolic”.

Some easy properties of the above introduced classes of simplicial complexes
are gathered in Fact 1.2. The proofs are immediate hence we omit them.

1.2. Fact.

(0) A complex is locally k-large if and only if the link of every nonempty
simplex has the systole at least k.

(1) A (locally) k-large complex is (locally) m-large for k ≥ m.
(2) A full subcomplex in a (locally) k-large complex is (locally) k-large.
(3) A simplicial complex is 4-large if and only if it is flag.
(4) For k > 4, X is k-large if and only if it is flag and sys(X) ≥ k.

Note that, in view of property (4) above, a simplicial complex X is 5-large
if it is a “flag-no-square” complex, or verifies “Siebenmann no square condition”,
a condition which arises in the study of CAT(−1) property of cubical com-
plexes [Gr-HG].

The next result will be used in the proof of Lemma 1.7 for the purpose
analogous to reducing van Kampen diagrams in small cancellation theory.

1.3. Lemma. — Suppose that X is k-large and S1
m denotes the triangulation of S1

with m 1-cells. If m < k then any simplicial map f : S1
m → X extends to a simplicial map

from the disc D2, triangulated so that triangulation on the boundary is S1
m and so that there

are no interior vertices in D2.

Proof. — We will use induction with respect to m. For m = 3 the statement
follows from flagness of X. Suppose m > 3. Then there are some non-consecutive
vertices u, w of S1

m whose images under f either coincide or are connected with an
edge of X. Split S1

m into polygonal paths A and B with endpoints u, w. Consider
new triangulations of S1, denoted S1

A and S1
B, obtained by adding the edge (u, w)

to A and B, respectively. Note that, by the choice of u and w, restrictions of
the map f to A and B extend uniquely to the simplicial maps fA : S1

A → X
and fB : S1

B → X.
Since the vertices u, w are non-consecutive in S1

m, the triangulations S1
A, S1

B
consist of fewer than m edges. By the inductive assumption, there are triangulations
DA, DB of the 2-disk, and their simplicial maps FA, FB to X extending the maps
fA, fB, as required in the lemma. We then get extension of f as required by gluing
DA to DB along (u, w) and taking as F the union of the maps FA, FB.
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Remark. — It follows easily from the above lemma that every cycle of length
less than k in a k-large simplicial complex X has some two consecutive edges
contained in a common 2-simplex of X. In view of the fact that links of links of
a simplicial complex X are themselves links of X, this gives the following char-
acterization of k-systolicity: a simplicial complex X is k-systolic if it is connected,
simply connected, and every cycle of length less than k in any link of X has some
two consecutive edges contained in a 2-simplex of this link.

There are 4-systolic (respectively 5-systolic) complexes that are not 4-large
(respectively, 5-large). For example, take two octahedra (respectively, icosahedra),
delete the interior of a triangle from each copy and glue the resulting boundaries.
However, for k ≥ 6 we have

1.4. Proposition. — If X is a k-systolic simplicial complex with k ≥ 6 then X is

k-large.

Before proving the above proposition, we derive its corollary which will be
useful for our later constructions of k-large complexes in Sections 18–19.

A homotopical systole of a simplicial complex X is the minimal length of a cycle
that is homotopically nontrivial in X. (If X is infinite dimensional, we say that
a cycle is homotopically nontrivial in X if it is homotopically nontrivial in the
2-skeleton of X.) We denote homotopical systole of X by sysh(X).

1.5. Corollary. — Let k ≥ 6. A simplicial complex X is k-large if and only if it is

locally k-large and sysh(X) ≥ k.

Proof. — One of the implications follows from Proposition 1.4 by noting
that if X is locally k-large then there is no full homotopically trivial cycle of
length less than k in X (because, by Proposition 1.4, there is no such cycle in
the universal cover of X). The second implication follows by observing that the
shortest homotopically nontrivial cycle in any simplicial complex X is full.

Proof of Proposition 1.4. — We need to show that sys(X) ≥ k. Consider a full
cycle γ in X. A filling of γ is a continuous map f : ∆ → X such that ∆ is
the 2-disc and the restriction f |∂∆ is a homeomorphism on γ . Since X is simply
connected, there is a filling f0 : ∆0 → X. Using relative Simplicial Approximation
Theorem we can also arrange that ∆0 is a simplicial disc and f0 is a simplicial
map (which is a simplicial homeomorphism on the boundary). Recall that a sim-
plicial map is nondegenerate if it is injective on each simplex of the triangulation.

To proceed with the proof we need two lemmas, the first of which is related
to van Kampen Lemma from the small cancellation theory. The elementary proofs
of both lemmas are deferred until the end of this section.
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1.6. Lemma. — Let X be a simplicial complex, and γ a homotopically trivial cycle

in X. Then there exists a filling f of γ , f : ∆1 → X, which is a nondegenerate simplicial

map from a simplicial 2-disc ∆1, and which maps the boundary of ∆1 isomorphically on γ .

1.7. Lemma. — Let X, γ , satisfy the assumptions of Lemma 1.6, and X is locally

k-large. Then there exists a nondegenerate simplicial filling f : ∆2 → X of γ , such that every

interior vertex of ∆2 is contained in at least k triangles. Any filling of γ with the minimal

number of triangles has this property. If moreover γ is a full subcomplex in X, then every

boundary vertex of ∆2 is contained in at least two triangles, and there is at least one internal

vertex in ∆2.

To conclude the proof of Proposition 1.4 we use the Gauss–Bonnet theorem.
Let χ(v) denote the number of triangles containing vertex v. Then

1 = χ(∆2) = 1
6

[∑
v∈B

(3 − χ(v)) +
∑
v∈I

(6 − χ(v))
]
,

where B denotes the set of vertices on the boundary and I the set of vertices in
the interior of ∆2. Since the second sum is at most 6 − k, and the terms of the
first sum are at most 1, we conclude that |γ | = #B ≥ k, and hence sys(X) ≥ k.

1.8. Examples and non-examples of k-large and k-systolic complexes, for k ≥ 6.

(1) A graph X is k-large if and only if sys(X) ≥ k. It is k-systolic if and only
if it is a tree.

(2) Trees are the examples of complexes that are k-large for any k. We will
call such complexes ∞-large. Connected ∞-large complexes are necessarily
∞-systolic, since they are easily seen to be simply connected.

(3) Let Y be a triangulation of Euclidean or hyperbolic plane by congruent
equilateral triangles with angles 2π/m. Then Y is m-systolic. Let X be
a simplicial surface obtained as a quotient of Y. If 6 ≤ k ≤ m then X is k-
large if and only if sysh(X) ≥ k. By residual finiteness of the automorphism
group of Y, this gives lots of k-large surfaces.

(4) Let X be the Cayley complex of a group with triangular presentation (i.e.
presentation with all relations of length 3). Then X is systolic if and only
if the group (presentation) satisfies the C(3)−T(6) small cancellation con-
dition. More generally, a connected and simply connected 2-dimensional
simplicial complex X is systolic if and only if it is a so called C(3)−T(6)

simplicial complex [LS]. For example, buildings of type Ã2, viewed as sim-
plicial complexes, are systolic.

(5) Using the combinatorial Gauss–Bonnet theorem, one sees that a triangu-
lation of the 2-sphere is never k-large, for any k ≥ 6. It follows that no
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triangulation of a manifold M with dim M ≥ 3 is 6-large, since 2-spheres
occur as links of some simplices in M.

(6) As we show later in this paper, for any k ≥ 6 there exist k-large simplicial
pseudomanifolds in any dimension (see the next example). Moreover, any
finite simplicial pseudomanifold admits a finite k-large branched cover, for
any k ≥ 6.

(7) We briefly describe an example of a 3-dimensional systolic pseudomanifold,
which is the simplest new example obtained with the method presented
later in this paper. For any integer m ≥ 3 consider the Coxeter group

Wm = 〈
s1, s2, s3

∣∣s2
1, s2

2, s2
3, (s1s2)

m, (s1s3)
m, (s2s3)

m
〉

and its Coxeter complex Σm being the triangulation of the plane with
2m triangles around every vertex. By residual finiteness of Wm, there is
a torsion free normal subgroup N < Wm of finite index, such that the
quotient surface N\Σm is 2m-large. We show that there exists a simply
connected 3-dimensional pseudo-manifold X = X(m, N) with all vertex
links isomorphic to N\Σm. It is obtained as the universal development of
the 3-simplex of groups with groups Z2 at 2-faces, with dihedral groups
Dm (of order 2m) at edges, and with the quotient groups Wm/N at vertices.
Developability of this simplex of groups is addressed later in this paper,
see Theorem D.

(8) There is a characterization of finite ∞-large simplicial complexes, due to
G. A. Dirac [D]. It says that the class of finite ∞-large simplicial com-
plexes is precisely the smallest class C such that:
(i) single simplex of arbitrary dimension belongs to C ;

(ii) if X is obtained from some complexes X1, X2 ∈ C by gluing them
along a single simplex, then X ∈ C .

The proof of this fact may be also found in [GLR].

Proof of Lemma 1.6. — We introduce a class of complexes and maps more
general than simplicial ones. An almost simplicial 2-complex is a cell complex whose
cells are simplices glued to lower dimensional skeleta through nondegenerate maps.
More precisely, we allow multiple edges and loops in the 1-skeleton, and we require
that the interior of each boundary edge of a 2-cell is glued to the 1-skeleton
homeomorphically on the interior of some 1-cell. A simplicial map from an almost
simplicial 2-complex to a simplicial complex is determined by its values at the
vertices in the same way as an ordinary simplicial map (for example, a loop is
necessarily mapped to a vertex).

Suppose γ is a closed embedded (contractible) polygonal curve in a simpli-
cial complex X, and suppose f0 : ∆0 → X is a simplicial filling of γ . We will
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first modify it to a nondegenerate simplicial filling f ′
0 : ∆′

0 → X with ∆′
0 almost

simplicial. This will be done in a sequence of modifications as follows. Suppose e
is an edge in ∆0 which is mapped by f0 to a vertex. Then there are two 2-cells
in ∆0 adjacent to e. Delete (the interior of the union of ) these two cells from
∆0 and glue the four resulting free edges in pairs, so that the two distinct ver-
tices of e are identified. This gives an almost simplicial disc ∆′ with the simplicial
map f ′ to X induced from f0 (and is the reason for introducing almost simplicial
triangulations).

We wish to repeat the same modification procedure with the new triangula-
tion, but now, due to the fact that the triangulation is almost simplicial, we need
to consider two more cases.

The first possibility is that e is a loop. It then bounds a sub-disc D of ∆′.
There is also a 2-cell C outside D adjacent to e. If all the edges of C are loops,
then we have a nested family of discs bounded by them; take e∗ to be the outer-
most loop and repeat the argument with e∗ in place of e. Eventually we arrive
at the situation where the two remaining edges of C are embedded. Now delete
from ∆′ the interior of the union of D and C, and glue the two resulting free
edges to get a new almost simplicial disc ∆′ with the induced simplicial map f ′

to X.
The second possibility is that e is adjacent on both sides to the same

2-cell C of ∆′. Then e is not a loop, and plays the role of two out of three
boundary edges of C. The remaining third edge is necessarily a loop; thus we
are in the situation as in the previous case, and we perform the modification as
above.

Since a modification reduces the number of 2-cells in ∆′, we eventually ob-
tain an almost simplicial filling f ′

0 : ∆′
0 → X which is nondegenerate (since it is

nondegenerate on the 1-skeleton of ∆′
0).

The next step is to further modify the filling so that it remains nondegener-
ate but becomes simplicial. Note that, since f ′

0 is nondegenerate, ∆′
0 has no loop

edges. It is then sufficient to eliminate multiple edges (i.e. edges sharing both end-
points), while keeping induced maps to X nondegenerate, as an almost simplicial
disc without loops and multiple edges is simplicial.

Consider a pair e1, e2 of edges in ∆′
0 with common endpoints. Their union

bounds a subdisc D of ∆′
0. Remove the interior of D from ∆′

0 and glue the re-
sulting two free edges with each other, getting new ∆′

0 with new nondegenerate
simplicial map f ′ to X induced from the previous one. Again, the procedure ter-
minates, since the number of 2-cells in ∆′

0 decreases. The final result f1 : ∆1 → X
is a nondegenerate simplicial filling, as required.

Notice that the procedure we describe does not change the map f on the
boundary.
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Proof of Lemma 1.7. — Take a filling produced in Lemma 1.6 and suppose
v is an interior vertex of ∆1 contained in less than k triangles. First we shall
construct a filling f ′

1 : ∆′
1 → X of γ , with ∆′

1 having one less interior vertex
than ∆1. We delete the interior of subdisc Res(v,∆1), replace it with some tri-
angulation given by Lemma 1.3, and define f ′

1 so that it coincides with f1 on
∆1 \ int[Res(v,∆1)].

The resulting filling is in general not nondegenerate, but the triangulation
does have fewer simplices. Now we apply to it procedure used in the proof of
Lemma 1.6, which produces a nondegenerate simplicial map with still fewer sim-
plices.

Iteration of this procedure terminates after finitely many steps yielding a sim-
plicial disc ∆2 and a map f2 : ∆2 → X which establishes the first part of
Lemma 1.7.

Now, each boundary vertex is contained in at least 2 triangles and there is
at least one interior vertex, since otherwise the boundary ∂∆2 is not full in ∆2

and thus γ is not full in X. This completes the proof of Lemma 1.7.

2. 7-systolic implies hyperbolic

One of the main themes of this paper is that k-systolic complexes with k ≥ 6
resemble to a large extent CAT(0) spaces, though there are no obvious CAT(0)

metrics on them. As a first step in this direction we show in this section that 7-
systolic complexes and groups are hyperbolic in the sense of Gromov. This solves
a problem pointed out by M. Gromov [Gr-AI, Remark (a) on p. 176] to find
a purely combinatorial condition for simplicial complexes of arbitrary dimension
that yields hyperbolicity. For an exposition of the theory of hyperbolic metric spaces
and groups see [BH,GdelaH].

2.1. Theorem. — Let X be a 7-systolic simplicial complex. Then the 1-skeleton X(1)

of X with its standard geodesic metric is hyperbolic in the sense of Gromov. More precisely,

any geodesic triangle in X(1), with vertices at vertices of X, is δ-thin with δ = 5
2 .

Remark. — Note that, strictly speaking, to prove hyperbolicity of a graph
one needs to show uniform thinness of all geodesic triangles, not only those with
vertices at vertices of the graph. However, uniform thinness of the latter triangles,
say with constant δ, easily implies uniform thinness of geodesic m-gons with m ≤ 6
and with vertices at vertices of the graph, with constant 4δ. (By thinness of an
m-gon we mean that any of its edges remains close to the union of all other edges.)
This is true since we can “decompose” an m-gon into m−2 ≤ 4 geodesic triangles,
without adding new vertices. Since an arbitrary geodesic triangle in a graph deter-
mines a geodesic m-gon as above, with edges of length 1 near some vertices of the
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triangle, it inherits thinness from this m-gon, with constant 4δ + 1. In particular,
the 1-skeleton of a 7-systolic complex is δ-hyperbolic with δ = 11. This estimate
is by no means optimal.

Since a 7-systolic group is quasi-isometric to (the 1-skeleton of ) the corres-
ponding 7-systolic simplicial complex on which it acts, Theorem 2.1 implies the
following.

2.2. Corollary. — A 7-systolic group is word-hyperbolic

Proof of Theorem 2.1. — Take any three vertices x, y, z in X, and join them
by three geodesics γxy, γxz, γyz in X(1) to obtain a triangle γ . We need to show
that every point on the side γxy is distance at most 5

2 in X(1) from the union of
the remaining two sides.

Clearly γxy is embedded. Without loss of generality we can assume that γ

is embedded (i.e. geodesics γxy, γxz, γyz intersect only at their endpoints) in view of
the following

2.3. Lemma. — Suppose that two vertices x, y ∈ X are joined by two geodesics γxy, γ
∗
xy

in X(1). Then for any vertex a on γxy there is a vertex a∗ on γ ∗
xy, so that a, a∗ are joined

by an edge in X. In particular, any point on the geodesic γxy is distance at most 3
2 in X(1)

from the geodesic γ ∗
xy.

Proof of Lemma 2.3. — Without loss of generality we can assume γxy, γ
∗
xy are

disjoint (except at the endpoints). Lemma 1.6 produces a filling in X of the digon
formed by γxy, γ

∗
xy, so that each vertex on the boundary is contained in at least

2 triangles, possibly with the exception of x, y. Suppose Lemma 2.3 is false. Then
(the filling of ) the digon has at least one internal vertex.

Apply the Gauss–Bonnet formula as in the proof of Proposition 1.4 to the
digon. In the first sum at most two terms can be equal 2; the second sum is
strictly negative. Thus, if there are k negative terms in the first sum, there are
also at least k + 3 positive terms. Hence on one of the geodesics, say γxy, there
are n vertices with negative contribution to the Gauss–Bonnet sum and at least
n + 2 vertices with positive contribution. Thus negative vertices cannot separate
positive ones, and we have two positive vertices that are either consecutive or
separated only by several zero vertices (i.e. vertices with zero contribution to the
Gauss–Bonnet sum). But this contradicts the fact that γxy is a geodesic in X(1),
hence the lemma.

Coming back to the proof of Theorem 2.1, take a filling of γ in X con-
structed as in Lemma 1.6. The domain of the filling map is a disc ∆ triangulated
so that each vertex in the interior is contained in at least 7 triangles, and each
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vertex at the boundary, with possible exception of points x, y, z, is contained in at
least two triangles.

A vertex on the boundary is called positive, negative or zero vertex if 3 − χ(v) is
positive, negative or zero respectively. Let p (respectively n) denote the number of
positive (respectively negative) vertices other than x, y, z at the boundary ∂∆. Since
γxy is a geodesic in X(1), any two positive vertices in the interior of γxy are sepa-
rated by a negative one. Apply the Gauss–Bonnet formula to the disc ∆. The three
terms in the first sum corresponding to the vertices x, y, z are ≤ 2 and the remain-
ing terms of this sum are at most 1. If the second sum is ≤ −4 then p ≥ n + 4,
and hence on one of the sides of the triangle there are at least 2 more positive
vertices than negative. Thus there are two positive vertices which are not separated
by a negative one, a contradiction. Hence ∆ has at most three internal vertices.

We claim that a geodesic triangle γ having a filling ∆ as above with at
most three internal vertices is 5

2 -thin To prove this, take first a vertex v on γxy

whose distance from both x, y is bigger than 2. If its distance in ∆(1) from the
union of remaining sides is also bigger than 2, there are at least 6 vertices in ∆

which are distance 2 from v. Only two of these vertices are on γxy, so at least
four of them are internal in ∆, a contradiction. Thus the distance of v from the
remaining two sides is at most 2. It follows easily that the distance in ∆(1) of any
point on the side γxy from the union of remaining two sides is at most 5

2 .
Triangles in the range of the filling map are thinner than in the source,

which concludes the proof.

3. 3-convexity in simplicial complexes

In this section we introduce the notion of 3-convexity and study its basic
properties. It is inspired by the notion of convexity in spheres, or by the notion
of π-convexity in CAT(1) spaces (compare Fact 15.4). The notion will play the
key role in our later developments.

Given a simplicial complex X and its subcomplex Q , a cycle in the pair

(X, Q ) is a polygonal path γ in the 1-skeleton of X with endpoints contained in
Q and without self-intersections, except a possible coincidence of the endpoints.
A cycle γ as above is full in (X, Q ) if its simplicial span in X is contained in
the union γ ∪ Q . A subcomplex Q in a simplicial complex X is 3-convex if Q is
full in X and every full cycle in (X, Q ) of length less than 3 (i.e. consisting of
less than 3 edges) is contained in Q .

Remark. — 3-convexity can be expressed equivalently as follows. A subcom-
plex Q in a simplicial complex X is 3-convex if and only if it is full and, given
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any geodesic γ of length 2 in the 1-skeleton of X, with both endpoints in Q , the
mid-point of γ (and thus the whole of γ ) is also contained in Q .

3.1. Examples of 3-convex subcomplexes.

(1) Each simplicial complex X is 3-convex in itself.
(2) Let X be a flag simplicial complex. Then any simplex ∆ ⊂ X is 3-convex

in X. To see this, consider a cycle γ of length 2 in (X,∆), with its mid-
vertex not in ∆. We need to show that γ is not full in (X,∆). Since
both endpoints of γ are in ∆, they are connected with an edge of X.
Since X is flag, this implies that the three vertices of γ span a 2-simplex
of X. Since this 2-simplex is not a face of ∆, the simplicial span of γ is
not contained in γ ∪ ∆, which completes the proof.

(3) Let X be a 5-large simplicial complex. Then the residue Y = Res(σ, X)

of any simplex σ is 3-convex in X. Indeed, Y is a full subcomplex of X,
because X is flag. Moreover, any cycle of length 2 in (X, Y), with its mid-
vertex not in Y, and with the endpoints connected with an edge of X,
is not full in (X, Y) by the argument as in the previous example. Thus
it remains to exclude existence of a cycle γ of length 2 in (X, Y), not
contained in Y, with the endpoints not connected with an edge of X.
Since the endpoints p, q of such γ are at distance 2 and contained in the
residue of σ , they both are not in σ . Moreover, there is a vertex w of σ

at distance 2 from the mid-vertex m of γ , since otherwise (due to flagness
of X) m is in the residue. But then we get a full cycle of length 4 in X,
passing through vertices p, m, q, w, p, which contradicts 5-largeness.

(4) By a clique in a flag simplicial complex X we mean the subcomplex
spanned by any set of vertices that are pairwise connected with edges
of X. The clique spanned by a finite set is a simplex, and no other cliques
occur in finite dimensional complexes. An infinite dimensional complex
may contain an infinite clique, i.e. the one spanned by an infinite vertex set.
Clearly, infinite cliques are not simplices, though some of their properties
are analogous to those of simplices. For example, the argument as in (2)
above shows that any clique in a flag simplicial complex X is 3-convex
in X.

Facts 3.2–3.4 below follow easily from the definitions.

3.2. Fact.

(1) The intersection of any family of 3-convex subcomplexes is a 3-convex
subcomplex.

(2) If Q is 3-convex in X and L is 3-convex in Q then L is 3-convex in X.
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(3) Let X be a flag simplicial complex and Q its 3-convex subcomplex. Then
for any simplex σ of Q the link Q σ is 3-convex in the link Xσ .

A subcomplex Q is locally 3-convex in X if for every nonempty simplex σ

of Q the link Q σ is 3-convex in the link Xσ . Note that this definition allows
equalities Q σ = Xσ at simplices σ of Q .

3.3. Fact.

(1) Any 3-convex subcomplex in a flag complex X is a locally 3-convex sub-
complex in X.

(2) The intersection of any family of locally 3-convex subcomplexes is a lo-
cally 3-convex subcomplex.

We now turn to convexity properties in k-large and locally k-large complexes.
Since a full subcomplex of a k-large complex is k-large, we have

3.4. Fact.

(1) A 3-convex subcomplex of a k-large simplicial complex is k-large.
(2) A locally 3-convex subcomplex in a locally k-large simplicial complex is

locally k-large.

A cycle γ is homotopically trivial in (X, Q ) if there is a path η in Q con-
necting the endpoints of γ such that the loop γ ∪ η is contractible in X. In this
definition we allow that η reduces to a point (when the endpoints of γ coincide).
A cycle is homotopically non-trivial if it is not homotopically trivial. Note that a cycle
connecting distinct components of Q is always homotopically non-trivial.

A relative homotopical systole for the pair (X, Q ) of a simplicial complex and its
subcomplex, denoted sysh(X, Q ), is the length of the shortest homotopically non-
trivial cycle in (X, Q ). The next proposition shows that in locally 6-large simplicial
complexes, 3-convexity can be characterized in terms of local 3-convexity and the
relative homotopical systole.

3.5. Proposition. — Let X be a locally 6-large simplicial complex and let Q be

a full subcomplex of X.

(1) If Q is locally 3-convex in X and sysh(X, Q ) ≥ 3 then Q is 3-convex.

(2) The converse implication holds provided X is flag.

Proof. — To prove (2), take the shortest cycle γ homotopically nontrivial in
(X, Q ) and note that it intersects Q only at its endpoints. The length |γ | of γ

cannot be 1 since Q is full. If |γ | = 2 then γ is not full in (X, Q ) due to
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3-convexity of Q . Then either the endpoints of γ span an edge not contained
in Q , which contradicts the fullness of Q , or otherwise the three vertices of γ

span a 2-simplex in X, contradicting the fact that γ is homotopically nontrivial
in (X, Q ). Hence sysh(X, Q ) ≥ 3. Since X is flag and Q is 3-convex, it is also
locally 3-convex (Fact 3.3.1), and part (2) follows.

To prove part (1), suppose we have a length d full cycle γ in (X, Q ), inter-
secting Q only at its endpoints. We have to prove that d ≥ 3. If γ is homotopically
nontrivial in (X, Q ) we are done, since sysh(X, Q ) ≥ 3. We therefore assume that
γ is homotopically trivial in (X, Q ). Thus there is a polygonal path η contained
in Q , with the same endpoints as γ , such that the union γ ∪ η is a contractible
loop in X. Moreover, η can be chosen so that it is of minimal length. In particular
the closed polygonal path γ ∪ η is embedded in X. Beware that if the endpoints
of γ coincide then η reduces to a single vertex.

By Lemma 1.6, there is a simplicial disc D filling the loop γ ∪ η in X.
Among all choices of η and D, we pick one for which D has the smallest number
of triangles (that may affect the choice of η). By Lemma 1.7 the interior vertices
of D are contained in at least 6 triangles of D.

Every interior vertex of γ (viewed as the boundary vertex of D) is contained
in at least two triangles of D, since γ is full in (X, Q ). Every interior vertex v
of η (viewed as the boundary vertex of D) is contained in at least 3 triangles
of D. Indeed, if v is contained in one triangle of D, (the image of ) the triangle is
in Q (since Q is full), and η is not of minimal length. If v is contained in two
triangles of D, they are both in Q by local 3-convexity and by minimality of η,
and then D is not minimal. Finally, initial and terminal vertices of γ (which may
coincide) are contained in at least one triangle.

Denote, as in Section 1, by χ(v) the number of triangles in D containing v.
Let I, G, E denote the sets of interior vertices in D, γ and η respectively. Suppose
that the endpoints of γ do not coincide, and denote them by a, b. Applying the
inequalities we just established and the Gauss–Bonnet theorem we get

1 = 1
6

[∑
v∈I

(6 − χ(v)) +
∑
v∈G

(3 − χ(v))

+
∑
v∈E

(3 − χ(v)) + 3 − χ(a) + 3 − χ(b)
]

≤ 1
6
(0 + d − 1 + 0 + 4).

Thus 3 ≤ d as required.
Dealing similarly with the remaining case, in which the endpoints of γ co-

incide, we get even sharper estimate 4 ≤ d . Hence the proposition.
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Proposition 3.5 allows to decide inductively if a subcomplex in a 6-large
complex is 3-convex, by referring to 3-convexity of its links. The next three results
apply this idea and give some criteria for 3-convexity. By diameter of a complex we
mean the maximum distance between its vertices in the 1-skeleton of the complex.

3.6. Lemma. — Let Q be a full locally 3-convex subcomplex in a 6-large complex X
and suppose that Q is connected and diam(Q ) ≤ sysh(X) − 3. Then Q is 3-convex in X.

Proof. — With Proposition 3.5, it suffices to prove that sysh(X, Q ) ≥ 3. Let γ

be a homotopically nontrivial cycle in (X, Q ). By the assumptions of the lemma,
there is a polygonal path η of length ≤ sysh(X) − 3 contained in Q and with the
same endpoints as γ . Moreover, the closed path γ ∪ η is homotopically nontrivial
in X, and thus the length of this path is at least sysh(X) by Corollary 1.5. But
this means that the length of γ is at least 3, which finishes the proof.

3.7. Lemma. — Let Q be a full connected finite dimensional subcomplex in a 6-large

simplicial complex X. Suppose that diam(Q ) ≤ sysh(X) − 3 and that for each simplex σ of

Q either Q σ = Xσ or Q σ is connected with diam(Q σ) ≤ 3. Then Q is 3-convex in X.

Proof. — Induction over the dimension of Q using Lemma 3.6.

Lemmas 3.6 and 3.7 immediately imply the following corollary in which
a subcomplex Q may have infinite dimension.

3.8. Corollary. — Let Q be a full connected subcomplex in a 6-large simplicial

complex X. Suppose that diam(Q ) ≤ sysh(X) − 3 and that for each simplex σ of Q either

Q σ = Xσ or Q σ is a finite dimensional connected complex with diameter diam(Q σ ) ≤ 3.

Then Q is 3-convex in X.

4. Locally 3-convex maps and their applications

In this section we introduce the concept of a locally 3-convex map. We
also use this concept to prove that finite dimensional 6-large simplicial complexes
are aspherical, or equivalently, finite dimensional systolic complexes are contractible
(Theorem 4.1.1, or Theorem B of Introduction). This result may be viewed as an
analogue (for simplicial nonpositive curvature) of the Cartan–Hadamard theorem.

Although the notion of a locally 3-convex map makes sense in infinite di-
mensional case, its application in our arguments requires the additional assumption
about finite dimension.

Given a nondegenerate simplicial map f : Q → X and a simplex σ ∈ Q ,
the induced map on links fσ : Q σ → Xf (σ) is the map obtained by restricting f to the
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link Q σ (the image of this restriction is necessarily contained in the link Xf (σ)).
We will say that a nondegenerate simplicial map f : Q → X is locally injective, if
for any simplex σ ⊂ Q the induced map fσ is injective. Let X be a locally 6-large
simplicial complex and Q an arbitrary simplicial complex. A nondegenerate locally
injective simplicial map f : Q → X is locally 3-convex, if for each simplex σ ⊂ Q
the image fσ (Q σ)) is 3-convex in Xf (σ) (in particular, fσ(Q σ) may be the whole
of Xf (σ)). Note that if Q ⊂ X is a locally 3-convex subcomplex then the inclusion
map is clearly locally 3-convex.

4.1. Theorem. — Let X be a finite dimensional connected locally 6-large simplicial

complex.

(1) The universal cover X̃ of X is contractible. In particular, any finite dimensional

systolic simplicial complex is contractible.

(2) Suppose that Q is a connected simplicial complex and f : Q → X is a locally

3-convex simplicial map. Then the induced homomorphism f∗ : π1Q → π1X of

fundamental groups is injective.

To prove Theorem 4.1 we will use the fact that locally 3-convex maps can
be extended to covering maps. We formulate this fact more precisely as Proposi-
tion 4.2 below, and then show how it implies the theorem. The proof of Propo-
sition 4.2 occupies the last part of this section and it uses a technical result,
Lemma 4.3, the proof of which we defer until Section 5.

4.2. Proposition. — Suppose that X is a finite dimensional locally 6-large simplicial

complex and let f : Q → X be a locally 3-convex map. Then f extends to a covering map

fe : Q e → X in such a way that Q is a deformation retract of Q e.

Proof of Theorem 4.1. — A function f : {v} → X that sends a vertex v
to a vertex of X is clearly locally 3-convex. By Proposition 4.2, it extends to
a covering map fe : Y → X, where Y is contractible. This proves part (1).

To prove (2), note that by Proposition 4.2 the map f extends to a covering
map fe : Q e → X such that the inclusion Q ⊂ Q e is a homotopy equivalence. Since
a covering map induces a monomorphism of fundamental groups, the theorem
follows.

The proof of Proposition 4.2 requires some preparations. Given a locally
3-convex map f : Q → X, define

∂f Q := {σ ∈ Q | fσ : Q σ → Xf (σ) is not an isomorphism},
and observe that ∂f Q is a simplicial subcomplex of Q . ∂f Q can be thought of
as a kind of boundary of Q relative to f , hence the notation. For a subcomplex
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K of a simplicial complex L, denote by NL(K) the subcomplex of L being the
union of all (closed) simplices that intersect K.

A small extension of a locally 3-convex map f : Q → X is a map Ef : EQ → X
satisfying the following conditions:

(E1) EQ is a simplicial complex containing Q as a subcomplex and
NEQ (Q ) = EQ ;

(E2) Ef is a nondegenerate simplicial map that extends f ;
(E3) for each simplex τ ∈ EQ that intersects Q the map (Ef )τ : (EQ )τ →

Xf (τ) is an isomorphism;
(E4) Ef is locally 3-convex;
(E5) Q is a deformation retract in EQ .

4.3. Lemma. — Every locally 3-convex map f : Q → X to a finite dimensional

locally 6-large simplicial complex X admits a small extension.

We defer the proof of the lemma until Section 5 but show now how it
implies Proposition 4.2.

Proof of Proposition 4.2. — Put E0f = f and E0Q = Q . Define recursively
a sequence of small extensions E jf : E jQ → X by E j+1Q = E(E jQ ) and E j+1f =
E(E jf ). Put Q e := ⋃∞

j=0 E jQ and fe := ⋃∞
j=0 E jf , thus getting a map fe : Q e → X.

Since by property (E3) of a small extension the induced map ( fe)τ : (Q e)τ →
Xfe(τ) is an isomorphism for each simplex τ ∈ Q e, it follows that fe is a covering
map. By property (E5), Q is contained in Q e as a deformation retract, hence the
proposition.

5. Existence of small extensions

This section is entirely devoted to the proof of Lemma 4.3.

We start with some definitions and notation. Given a finite dimensional lo-
cally 6-large simplicial complex X and a locally 3-convex map f : Q → X, define
the following family of pairs of simplices

Ef := {(σ, τ) ∈ ∂f Q × X : τ ⊂ Xf (σ), τ ∩ fσ (Q σ ) = ∅}.
The motivation for considering the family Ef is as follows. Suppose we are given
a small extension Ef : EQ → X of f . Then to any pair (σ, τ) ∈ Ef there corres-
ponds a simplex (Ef )−1

σ (τ) ∈ (EQ )σ ⊂ EQ , which we denote shortly τσ . Moreover,
we have Ef (τσ ) = τ . This shows that pairs from Ef represent “germs” of the ex-
tension of f to Ef . In fact, we will construct a small extension Ef making use of
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the set Ef . For this we also need the smaller family

E max
f := {(σ, τ) ∈ Ef : there is no ρ ⊃ σ with (ρ, τ) ∈ Ef }.

As we will see later, the elements of the set E max
f will correspond bijectively, through

the map (σ, τ) → τσ , to the simplices disjoint with Q in the constructed small
extension domain EQ .

The next lemma collects basic properties of the families Ef and E max
f .

5.1. Lemma.

(1) If (σ, τ) ∈ Ef and ρ ⊂ σ then (ρ, τ) ∈ Ef .

(2) If (σi, τ) ∈ Ef for i = 1, 2 and σ1 ∩σ2 �= ∅ then there is σ ∈ Q containing both

σ1 and σ2 such that (σ, τ) ∈ Ef .

(3) If (σi, τ) ∈ E max
f for i = 1, 2 and if σ1 �= σ2 then σ1 ∩ σ2 = ∅.

(4) Given (σ, τ) ∈ Ef , there exists a unique simplex πσ,τ ⊂ ∂f Q such that σ ⊂ πσ,τ

and (πσ,τ , τ) ∈ E max
f .

(5) If (σ, τ) ∈ Ef and ρ ⊂ σ then πρ,τ = πσ,τ .

In the proofs of Lemma 5.1 and of the remaining results in this section we
will often use the following.

Notation.

(1) Given a simplex σ and its face ρ, we denote by σ − ρ the face of σ

spanned by all the vertices not contained in ρ.
(2) Given simplices σ, τ in a simplicial complex K, denote by σ ∗ τ the

simplex of K spanned by the union of the vertex sets of σ and τ . Note
that in general such a simplex in K may not exist. We will speak of
simplices of this form only when they exist.

Proof of Lemma 5.1. — To prove (1), consider first the case when τ is a
0-simplex (i.e. a vertex). Let (σ, v) ∈ Ef , where v is a vertex, and let ρ ⊂ σ . If
(ρ, v) /∈ Ef , it follows that v ∈ fρ(Q ρ). We also have σ − ρ ⊂ fρ(Q ρ), because
σ ⊂ Q . On the other hand, the simplex f (σ − ρ) ∗ v ⊂ Xf (ρ) is not contained
in fρ(Q ρ), because the simplex f (σ) ∗ v ⊂ X is not contained in f (σ) ∗ fσ (Q σ).
This contradicts fullness of fρ(Q ρ) ⊂ Xf (ρ) (which holds by local 3-convexity of f ).
Thus the assertion follows in this case.

To deal with the other cases, suppose now that (σ, τ) ∈ Ef and dim τ ≥ 1.
For any vertex v of τ we clearly have (σ, v) ∈ Ef . It follows from what we have
just proved for vertices that if ρ ⊂ σ then v /∈ fρ(Q ρ) for any vertex v ∈ τ . Then
clearly τ ∩ fρ(Q ρ) = ∅ and thus (ρ, τ) ∈ Ef . This finishes the proof of (1).

To prove (2), we first show that the union of the vertices of σ1 and σ2

spans a simplex of Q . Put ρ = σ1 ∩ σ2. Since Q ρ is flag (because the isomorphic
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complex fρ(Q ρ) is 3-convex, and hence full, in Xf (ρ) which is 6-large and hence
flag), it is sufficient to show that there is an edge in Q ρ between any two vertices
v1 ∈ σ1 − ρ and v2 ∈ σ2 − ρ. For an arbitrary vertex t ∈ τ we get polygonal path
f (v1)tf (v2) in Xf (ρ), intersecting fρ(Q ρ) only at its endpoints. By 3-convexity of
fρ(Q ρ) in Xf (ρ), this path cannot be full in (Xf (ρ), fρ(Q ρ)), and hence there is an
edge in Xf (ρ) between f (v1) and f (v2). By the fact that fρ(Q ρ) is full in Xf (ρ),
this edge is in fρ(Q ρ), and thus v1v2 is an edge in Q ρ.

Let σ be the simplex of Q spanned by the union of σ1 and σ2. We now
show that τ ∈ Xf (σ) or equivalently that f (σ) and τ span a simplex of X. For
this it is sufficient to show that the three simplices τ , f (σ − σ1) and f (σ − σ2)

span a simplex of Xf (ρ). The latter follows from the fact that Xf (ρ) is flag (since
X is locally 6-large) and from the easy observation that the three simplices span
the simplices of Xf (σ1∩σ2) pairwise.

It remains to show that τ ∩ fσ(Q σ) = ∅, but this follows from the inclusion
fσ(Q σ) ⊂ fσ1(Q σ1) and the assumption that (σ1, τ) ∈ Ef . Thus we get (σ, τ) ∈ Ef ,
which completes the proof of (2).

Part (3) is a direct consequence of part (2). In view of the assumption that
X is finite dimensional, (4) and (5) follow easily from (3).

We now start the construction of a small extension. Together with verification
of conditions (E1)–(E5) from the definition, this construction occupies the rest of
this section.

Simplicial complex EQ . — As the vertex set of EQ take the (disjoint) union
of the vertex set of Q and the set {(σ, v) ∈ E max

f : v is a vertex}. For any pair
(σ, τ) ∈ Ef let δσ,τ be the simplex spanned by the set consisting of all vertices in
σ and all vertices of form (πσ,t, t), where t is a vertex of τ . Define EQ to be
the union of Q and the simplices δσ,τ for all (σ, τ) ∈ Ef .

It is immediate from the above description that Q ⊂ EQ and NEQ (Q ) =
EQ , i.e. that the constructed complex EQ satisfies condition (E1) in the definition
of a small extension. The next fact collects some more detailed properties of the
complex EQ , useful for later arguments in this section.

5.2. Fact.

(1) The simplices of EQ with all vertices in Q are exactly the simplices
of Q . In other words, Q is a full subcomplex in EQ .

(2) The simplices of EQ with part of vertices in Q and part of vertices
outside Q are exactly the simplices δσ,τ : (σ, τ) ∈ Ef . Moreover, for distinct
pairs (σ, τ) ∈ Ef the corresponding simplices δσ,τ are distinct.

(3) The simplices of EQ disjoint with Q are exactly the simplices δσ,τ − σ :
(σ, τ) ∈ E max

f .
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(4) If σ1 ⊂ σ2 and (σi, τ) ∈ Ef for i = 1, 2 then the corresponding simplices
δσi,τ − σi coincide.

(5) For distinct pairs (σ, τ) ∈ E max
f the corresponding simplices δσ,τ − σ are

distinct. Moreover, if (σi, τ) ∈ E max
f for i = 1, 2 and σ1 �= σ2 (which by

Lemma 5.1.3 means that these simplices σi are disjoint) then the corres-
ponding simplices δσi,τ are also disjoint.

(6) Complex EQ is the union of Q and the family of (closed) simplices
δσ,τ : (σ, τ) ∈ E max

f .

Proof. — All parts except (5) follow easily from the description of EQ . To
prove (5), suppose that (σi, τi) : i = 1, 2 are distinct pairs from E max

f . If τ1 �= τ2

then the sets of vertices of the simplices δσi,τi − σi : i = 1, 2 are easily seen to be
distinct. If τ1 = τ2 then σ1 �= σ2, and we are in the assumptions of the second
statement in (5). Since we know that then σ1 ∩σ2 = ∅, it is sufficient to show that
the simplices δσi,τi −σi are disjoint for i = 1, 2. For brevity, put τ := τ1 = τ2, and let
t ∈ τ be a vertex. We will show that the vertex (πσ2,t, t) ∈ δσ2,τ −σ2 is not a vertex
of the simplex δσ1,τ −σ1, which is clearly sufficient for completing the proof of (5).
The vertices in δσ1,τ1 −σ1 other than (πσ1,t, t) are distinct from (πσ2,t, t), since their
projections to X differ from t. It thus remains to show that (πσ1,t, t) �= (πσ2,t, t), i.e.
that πσ1,t �= πσ2,t. Suppose that the latter is not true and πσ1,t = πσ2,t . Then σ1 ∗σ2

is a simplex of ∂f Q , since both σ1 and σ2 are contained in πσ1,t. We then have
f (σ1)∗(τ−t) ⊂ Xt , f (σ2)∗(τ−t) ⊂ Xt and f (σ1)∗f (σ2) = f (σ1∗σ2) ⊂ Xt. Since the
link Xt is flag (because X is locally 6-large), it follows that f (σ1 ∗σ2)∗ (τ − t) ⊂ Xt,
and hence (σ1 ∗ σ2, τ) ∈ Ef . This contradicts any of the assumptions (σi, τi) ∈ E max

f
thus completing the proof.

Simplicial map Ef : EQ → X. — Define Ef by putting first Ef |Q = f and
Ef ((σ, v)) = v for all vertices (σ, v), and then extending simplicially. Observe that
since in this way the vertices of any simplex δσ,τ are mapped bijectively to the
vertices of the simplex f (σ)∗τ ⊂ X, the simplicial map Ef : EQ → X is both well
defined and nondegenerate, hence it fulfills condition (E2) of a small extension.

Passing to condition (E3), note that if g : K → L is a nondegenerate sim-
plicial map, and if for some vertex v ∈ K the induced map gv : Kv → Lg(v) is an
isomorphism, then for any simplex σ ⊂ K containing v the map gσ : Kσ → Lg(σ)

is also an isomorphism. It is then sufficient to prove that (Ef )v : (EQ )v → Xf (v) is
an isomorphism for any vertex v ∈ Q . This fact is immediate for all vertices v of
Q not contained in ∂f Q , since for them we have (EQ )v = Q v and (Ef )v = fv. It
remains to prove this fact for vertices v ∈ ∂f Q .

A nondegenerate simplicial map is an isomorphism if it is bijective on the
vertex sets and surjective. We now check those two properties for the map (Ef )v

with any vertex v ∈ ∂f Q .
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Given v ∈ ∂f Q , the simplices of EQ that contain v are either contained in
Q or have a form δσ,τ with (σ, τ) ∈ Ef and v ∈ σ . Thus, the vertices of (EQ )v

are either contained in Q v or are the vertices other than v in 1-simplices δv,w (for
all (v, w) ∈ Ef with w a vertex). The latter vertices are the vertices (πv,w, w) ∈ E max

f .
Vertices of Q v are mapped by (Ef )v bijectively on the vertices of fv(Q v), while
the vertices (πv,w, w) are mapped bijectively to the vertices w ∈ Xf (v) not contained
in fv(Q v). Thus the map (Ef )v : (EQ )v → Xf (v) is bijective on the vertex sets.

To prove surjectivity of the map (Ef )v, choose any simplex ρ in the link
Xf (v). We need to show that ρ is in the image of (Ef )v. If ρ ⊂ fv(Q v), there is
nothing to show. Otherwise, put ρ0 := ρ ∩ fv(Q v). Since, by local 3-convexity of f ,
fv(Q v) is a full subcomplex of Xf (v), ρ0 is either empty or a single proper face of ρ.
We then clearly have (v, ρ−ρ0) ∈ Ef , and we deduce that (v∗ f −1(ρ0), ρ−ρ0) ∈ Ef .
Since clearly Ef ((δv∗f −1(ρ0),ρ−ρ0)) = ρ∗f (v), it follows that ρ is in the image of (Ef )v

as required.

Local 3-convexity of Ef . — Since, according to (E3), the map (Ef )δ : (EQ )δ →
Xf (δ) is an isomorphism for any simplex δ ⊂ EQ that intersects Q , the local 3-
convexity condition for Ef is fulfilled at such simplices. Thus to establish (E4), it
remains to check that for any simplex ρ in EQ disjoint with Q the induced map
(Ef )ρ : (EQ )ρ → Xf (ρ) is injective and the subcomplex (Ef )ρ((EQ )ρ) is 3-convex
in the link XEf (ρ). For this we need the following.

5.3. Lemma. — Given a simplex ρ in EQ disjoint with Q , let ρ = δσ,τ −σ for the

appropriate (σ, τ) ∈ E max
f (as in Fact 5.2.3). Then σ ⊂ (EQ )ρ and N(EQ )ρ(σ) = (EQ )ρ.

The proof of Lemma 5.3 requires the following.

5.4. Claim. — Under assumptions of Lemma 5.3, the residue Res(ρ, EQ ) is
equal to the union U of the simplices δσ0,τ0 such that (σ0, τ0) ∈ Ef , σ0 ⊂ σ and
τ ⊂ τ0.

Proof. — The inclusion U ⊂ Res(ρ, EQ ) is easy in view of Fact 5.2.4. To get
the converse inclusion, denote by π an arbitrary simplex in EQ that contains ρ.
By the construction of EQ , π is contained in a simplex δσ ′,τ ′ for some (σ ′, τ ′)
∈ Ef . Looking at vertices not contained in Q in δσ,τ and δσ ′,τ ′ , we conclude that
τ ⊂ τ ′. Then (σ ′, τ) ∈ Ef and consequently (πσ ′,τ , τ) ∈ E max

f . Since we have also
(σ, τ) ∈ E max

f , Lemma 5.1.3 implies that either πσ ′,τ = σ or πσ ′,τ ∩ σ = ∅. In the
first of these two cases we have σ ′ ⊂ πσ ′,τ = σ and thus ρ ⊂ δσ ′,τ ′ , (σ ′, τ ′) ∈ Ef ,
τ ⊂ τ ′ and σ ′ ⊂ σ . Hence π ⊂ U. The case of πσ ′,τ ∩ σ = ∅ is in fact impossible,
since if it holds then the argument as in the proof of the second statement in
Fact 5.2.5 shows that the simplices δσ,τ and δπσ ′,τ ,τ are disjoint, and thus cannot
both contain ρ. Hence the claim.
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For later application in Section 7 we state here an observation immediately
implied by Claim 5.4.

5.5. Corollary. — Under assumptions of Lemma 5.3, the intersection Res(ρ, EQ )∩Q
is equal to σ .

Proof of Lemma 5.3. — A simplex δσ0,τ0 as in the claim determines the simplex
δσ0,τ0 − ρ in the link (EQ )ρ. The claim implies that (EQ )ρ is the union of such
simplices δσ0,τ0 − ρ. Since any such simplex shares a face with the simplex σ ,
namely the face σ0, it follows that N(EQ )ρ(σ) = (EQ )ρ, as expected.

We are now ready to prove that the map Ef is locally injective, a first step
in showing its local 3-convexity. The next lemma establishes much stronger local
property of Ef which will be referred to in later parts of the paper.

5.6. Proposition. — Given a simplex ρ = δσ,τ − σ with (σ, τ) ∈ E max
f , the induced

map (Ef )ρ maps the link (EQ )ρ isomorphically onto the subcomplex NXEf (ρ)
( f (σ)) in the

link XEf (ρ). In particular, this map is injective.

Proof. — The proof relies on the following general observation which we
state without proof.

Claim. — Let K be a simplicial complex, π ⊂ K a simplex, and suppose
that NK(π) = K. Furthermore, let L be a flag simplicial complex and h : K → L
a nondegenerate simplicial map. If for any simplex α ⊂ π the induced map hα :
Kα → Lh(α) is an isomorphism, then h maps K isomorphically on the subcomplex
NL(h(π)).

We now check that putting K = (EQ )ρ, π = σ , L = XEf (ρ) and h = (Ef )ρ,
all the assumptions in the claim are satisfied. The fact that NK(π) = K follows
from Lemma 5.3. The map h = (Ef )ρ is nondegenerate because, by condition
(E2), so is Ef . The complex L = XEf (ρ) is flag because X is locally 6-large. It
remains to check the properties of the induced maps hα = ((Ef )ρ)α : ((EQ )ρ)α →
(XEf (ρ))(Ef )ρ(α).

Observe that we have the identifications ((EQ )ρ)α = (EQ )ρ∗α, (XEf (ρ))(Ef )ρ(α)

= XEf (ρ∗α) and ((Ef )ρ)α = (Ef )ρ∗α. The fact that ((Ef )ρ)α is an isomorphism
follows then from the already proved property (E3) for Ef , by realizing that the
simplex ρ ∗ α intersects Q at α. Thus, by applying the claim, the proposition
follows.

In order to prove that the map Ef is locally 3-convex it now remains to
prove that, under notation of Proposition 5.6, the image complex (Ef )ρ((EQ )ρ)
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is 3-convex in the link Xf (ρ). We do this by referring to Lemma 3.7. By Proposi-
tion 5.6, the image complex (Ef )ρ((EQ )ρ) is the neighbourhood of some simplex
in X(Ef )ρ . The fact that any subcomplex of this form is full in the corresponding
6-large complex follows by arguments similar to those in Example 3.1.3 (we omit
them). Proposition 5.6 implies also that the subcomplex (Ef )ρ((EQ )ρ) is connected
and that diam[(Ef )ρ((EQ )ρ)] ≤ 3. Since the links of the complex (Ef )ρ((EQ )ρ)

are isomorphic to the complexes (Ef )ρ′((EQ )ρ′) for appropriate simplices ρ′ ⊃ ρ, it
follows that (Ef )ρ((EQ )ρ) satisfies the assumptions of Lemma 3.7, which completes
the proof of property (E4) for Ef .

Deformation retraction. — Put

Qi := Q ∪
⋃

{δσ,τ : (σ, τ) ∈ E max
f , dim τ < i}.

Let dim X = n. Then the dimension of any simplex τ such that (σ, τ) ∈ E max
f is

not greater than n − 1. Consequently, by Fact 5.2.6, we get

Q = Q0 ⊂ Q1 ⊂ ... ⊂ Q n = EQ .

We will show that Qi is a deformation retract of Qi+1 for i = 0, 1, ..., n−1, which
clearly implies that Q is a deformation retract of EQ .

5.7. Lemma. — Let (σ, τ) ∈ E max
f and dim τ = i. Then, denoting τσ = δσ,τ − σ ,

we have

(1) δσ,τ ∩ Qi = σ ∗ ∂τσ , where ∂τσ is the ordinary boundary subcomplex of the sim-

plex τσ ;

(2) δσ,τ \ Qi is a connected component in Qi+1 \ Qi.

Proof. — By definition, Qi is a subcomplex of EQ consisting of all those
simplices of EQ which have at most i vertices outside Q . Thus δσ,τ ∩ Qi consists
of those faces of δσ,τ which have at most i vertices outside Q . Since δσ,τ = σ ∗ τσ ,
δσ,τ ∩ Q = σ and dim τσ = dim τ = i, this easily implies (1).

To prove (2), it is sufficient to show that for any (σ ′, τ ′) ∈ E max
f with dim τ ′ = i,

distinct from (σ, τ), we have (δσ,τ \ Qi) ∩ (δσ ′,τ ′ \ Qi) = ∅. Suppose this is not true
and consequently δσ,τ ∩δσ ′,τ ′ is not contained in σ ∗∂τσ . Then τσ ⊂ δσ,τ ∩δσ ′,τ ′ , and
in fact τσ has to be a face in (τ ′)σ ′

, because the vertices of τσ are all outside Q .
Since dim τσ = dim(τ ′)σ ′

(they are both equal to i ), we have τσ = (τ ′)σ ′
. In view

of Fact 5.2.5 this implies that (σ, τ) = (σ ′, τ ′), which contradicts the assumption
that these pairs are distinct. Thus the lemma follows.

To finish the proof that Qi is a deformation retract of Qi+1 observe that,
in view of Lemma 5.7.2, deformation retraction of Qi+1 onto Qi can be com-
posed out of independently performed deformation retractions of simplices δσ,τ (for
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(σ, τ) ∈ E max
f and dim τ = i ) onto their intersections with Qi. The existence of the

latter deformation retractions is implied by Lemma 5.7.1 and the elementary fact
that σ ∗∂τ is a deformation retract of σ ∗τ . Since this gives the last condition (E5)
from the definition of a small extension, the proof of Lemma 4.3 is completed.

6. Locally 6-large simplicial complexes of groups

In this section we sketch the necessary background for and the proof of the
following.

6.1. Theorem. — Every connected, locally 6-large, finite dimensional simplicial complex

of groups is developable.

Theorem 6.1 allows to construct locally 6-large simplicial complexes by means
of complexes of groups. We will extensively exploit this possibility in our construc-
tions in Sections 18–20.

The proof of Theorem 6.1 is based on a version of Proposition 4.2 for
locally 3-convex maps to locally 6-large simplicial complexes of groups, and it is
very similar to the proof of Theorem 4.1.1.

We refer the reader to [BH] for details related to the notion of a complex
of groups. We refer also to Section 17 of this paper for an easier exposition of
a special case, namely a simplex of groups.

For a simplicial complex X, let X be the scwol (small category without loops,
as defined in [BH, p. 520]) related to the barycentric subdivision of X, defined
as follows. A vertex set V = V (X ) of X consists of simplices σ of X and a set
E = E (X ) of directed edges of X consists of pairs a = (τ, σ) such that σ is
a proper face of τ (i.e. σ ⊂ τ and σ �= τ ).

A complex of groups G(X ) = ({Gσ}, {ψστ}, {gστρ}) over a simplicial complex X
is given by the following data (cf. [BH, p. 535, Definition 2.1]):

(1) for each σ ∈ V a group Gσ called the local group at σ ;
(2) for each (τ, σ) ∈ E an injective homomorphism ψστ : Gτ → Gσ ;
(3) for each triple σ ⊂ τ ⊂ ρ of simplices with σ �= τ �= ρ a twisting element

gστρ ∈ Gσ

with the following compatibility conditions:

Ad(gστρ)ψσρ = ψστψτρ,(i)

where Ad(gστρ) is the conjugation by gστρ in Gσ , and

ψστ(gτρπ)gστπ = gστρgσρπ(ii)

for each σ ⊂ τ ⊂ ρ ⊂ π with σ �= τ �= ρ �= π.
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Remark. — For many purposes (e.g. for our considerations in Sections 17–20)
it is sufficient to deal with the so called simple complexes of groups, for which
all the twisting elements are trivial. We may then speak of a complex of groups
G(X ) = ({Gσ}, {ψστ}) consisting of local groups Gσ and injective homomorphisms
ψστ . Since the compatibility condition (i) reads then as ψσρ = ψστψτρ , we may
view the homomorphisms ψστ as inclusions of subgroups.

Let G(X ) be a complex of groups over a simplicial complex X, and let σ

be a simplex of X. For any simplex τ ∈ Xσ put Gσ
τ := ψσ(τ∗σ)(Gτ∗σ) ⊂ Gσ . A link

of G(X ) at σ , denoted L(G(X ), σ) is a complex defined by

L(G(X ), σ) := [ ⋃
τ∈Xσ

τ × (
Gσ/Gσ

τ

)]
/ ∼,

where the equivalence relation ∼ is determined by the maps (τ1, g1Gσ
τ1
) →

(τ2, g2Gσ
τ2
) induced by inclusions on first coordinates, for all simplices τ1 ⊂ τ2 ∈ Xσ

and for all g1, g2 ∈ Gσ such that g1Gσ
τ1

= g2g−1
σ(τ1∗σ)(τ2∗σ)G

σ
τ1

(cf. [BH, p. 564, Section
4.20]).

Remark. — Simplices (τ, gGσ
τ ) map injectively into the link L(G(X ), σ).

Nevertheless, L(G(X ), σ) needn’t be a simplicial complex in the strict sense, since
it may contain double edges.

Link L(G(X ), σ) carries a natural action of the group Gσ , defined by
g(x, g ′Gσ

τ ) = (x, gg ′Gσ
τ ). There is a Gσ -invariant map pσ : L(G(X ), σ) → Xσ de-

fined by pσ(x, gGσ
τ ) = x, which is nondegenerate (i.e. injective on each simplex)

and induces an isomorphism Gσ\L(G(X ), σ) → Xσ .

6.2. Definition. — A complex of groups G(X ) over a simplicial complex X is locally
6-large, if for each simplex σ of X the link L(G(X ), σ) is a 6-large simplicial complex.

The above definition makes the statement of Theorem 6.1 precise. Our
method of proof requires the notion of a locally 3-convex map to a locally 6-
large complex of groups.

Let Q be a simplicial complex and G(X ) a locally 6-large complex of
groups over a simplicial complex X. A map of Q to G(X ) consists of a non-
degenerate simplicial map f : Q → X (which induces in the obvious way maps
V (Q) → V (X ) and E (Q) → E (X ), denoted also by f , for the associated scwols
Q and X ), and a family φ(τ, σ) : (τ, σ) ∈ E (Q) of elements φ(τ, σ) ∈ Gf (σ), such
that

φ(ρ, σ) = φ(τ, σ)ψf (σ)f (τ)(φ(ρ, τ))gf (σ)f (τ)f (ρ) for σ ⊂ τ ⊂ ρ.
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Remark. — The above notion of map to a simplicial complex of groups
is a special case of the notion of morphism for complexes of groups, cf. [BH,
p. 536, Definition 2.4]. It is obtained by viewing a simplicial complex Q as the
trivial simplicial complex of groups over Q (i.e. a complex with trivial local groups,
homomorphisms and twisting elements).

For any simplex σ ∈ Q a map ( f , φ) : Q → G(X ) induces the map
( f , φ)σ : Q σ → L(G(X ), f (σ)) of links, defined by

( f , φ)σ (τ) = (
f (τ), φ(σ, σ ∗ τ)Gf (σ)

f (τ)

)
(compare [BH, p. 565, Proposition 4.23]).

6.3. Definition. — Let G(X ) be a locally 6-large simplicial complex of groups. A map

( f , φ) : Q → G(X ) is locally 3-convex if for each simplex σ ∈ Q the induced map

( f , φ)σ : Q σ → L(G(X ), f (σ)) is injective and the image ( f , φ)σ (Q σ ) is 3-convex in

the link L(G(X ), f (σ)). A map ( f , φ) : Q → G(X ) is a covering, if for each simplex

σ ∈ Q the induced map ( f , φ)σ : Q σ → L(G(X ), f (σ)) is an isomorphism.

We now state a result that generalizes Proposition 4.2 to the case of locally
3-convex maps to simplicial complexes of groups.

6.4. Proposition. — Let ( f , φ) : Q → G(X ) be a locally 3-convex map of

a simplicial complex Q to a locally 6-large finite dimensional simplicial complex of groups

G(X ). Then ( f , φ) extends to a covering map ( fe, φe) : Q e → G(X ) in such a way

that Q is a deformation retract of Q e.

The proof of the above proposition goes along the same lines as the proof of
Proposition 4.2. The objects ∂f Q and Ef occurring in the latter proof (especially
in the construction of a small extension for a convex map f in Section 5) have
to be replaced by the objects ∂( f ,φ)Q and E( f ,φ) defined in an analogous way as
follows. ∂( f ,φ)Q is the subcomplex of Q consisting of all those simplices σ ⊂ Q
for which the induced map ( f , φ)σ : Q σ → L(G(X ), f (σ)) is not an isomorphism.
E( f ,φ) is the set of all pairs (σ, τ) such that σ ⊂ ∂( f ,φ)Q , τ ⊂ L(G(X ), f (σ)) and
τ ∩ ( f , φ)σ (Q σ) = ∅. We omit details.

Proof of Theorem 6.1. — Let G(X ) be a simplicial complex of groups over
a connected finite dimensional simplicial complex X and suppose it is locally 6-
large. We have to show that G(X ) is developable.

Denote by {v} the simplicial complex consisting of a single vertex v. A map
i : {v} → X that sends v to any vertex of X may be viewed as a locally 3-convex
map of {v} to G(X ) (the family φ(τ, σ) : (τ, σ) ∈ E ({v}) is then empty). By
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Proposition 6.4, the map i extends to a covering map (h, ψ) : Y → G(X ), with
Y that retracts on v and thus is contractible. In particular, (h, ψ) is the universal
covering of G(X ).

Let Γ be the group of deck-transformations of the covering (h, ψ). The elem-
ents of Γ are the simplicial automorphisms γ : Y → Y which satisfy the following
two conditions:

(1) the map h◦γ : Y → X and the family ψ ◦γ(τ, σ) : (τ, σ) ∈ E (Y ) describe
a well defined map (h ◦ γ,ψ ◦ γ) from Y to G(X );

(2) γ preserves the projection h, i.e. h ◦ γ = h.

By the properties of the universal covering, G(X ) is isomorphic to the com-
plex of groups associated to the action of Γ on Y and hence it is developable.
This finishes the proof.

7. Systolic complexes and their convex subcomplexes

Recall that a simplicial complex X is systolic if it is locally 6-large, connected
and simply connected. In this section, as in the remaining part of the paper, we
assume that X is finite dimensional. We start the systematic study of systolic com-
plexes, by introducing the notions of convexity and strong convexity, and deriving
their basic properties.

7.1. Definition. — A subcomplex Q in a systolic complex X is convex if it is

connected and locally 3-convex.

Note that, by Fact 3.3.1, any connected 3-convex subcomplex of X is convex.
In particular, any simplex and any residue in a systolic complex is convex (see
Example 3.1.2 and 3.1.3).

7.2. Lemma. — Let Q be a convex subcomplex of a systolic complex X. Then

(1) Q is contractible;

(2) Q is full in X;

(3) Q is 3-convex in X;

(4) if X is k-systolic ( for some k ≥ 6) then Q is k-systolic.

Proof. — In view of contractibility of X (Theorem 4.1.1), (1) follows from
Proposition 4.2 applied to the inclusion map Q → X. By Proposition 4.2 (and its
proof ), X is isomorphic to the complex Q e obtained from Q by the infinite se-
quence of small extensions. Moreover, the full simplicial span of Q in X is clearly
contained in EQ . Together with Fact 5.2.1 (which says that Q is full in EQ ), this
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implies (2). By contractibility of X and connectedness of Q , there is no homotopi-
cally nontrivial cycle in (X, Q ) and thus sysh(X, Q ) = ∞. Together with Proposi-
tion 3.5.1, this implies (3). In view of Fact 1.2.2, part (4) follows from (1) and (2).

The next lemma describes small extensions of (the inclusion maps of ) convex
subcomplexes.

7.3. Lemma. — Let f : Q → X be the inclusion map of a convex subcomplex Q
in a systolic complex X. Then any small extension Ef : EQ → X maps EQ isomorphically

to the subcomplex NX(Q ) ⊂ X. Thus EQ can be identified with the subcomplex NX(Q )

and Ef with the inclusion map NX(Q ) → X.

Proof. — According to Proposition 4.2 and its proof, a small extension Ef :
EQ → X can be further extended to a covering map f̃ : Y → X, in such a way
that Q is a deformation retract of Y. One easily observes that then EQ = NY(Q )

and Ef = f̃ |EQ . Since X is simply connected and Y connected, the covering map f̃
is an isomorphism. Hence the lemma.

7.4. Corollary. — Let Q be a convex subcomplex in a systolic complex X. Then

(1) the subcomplex NX(Q ) is also convex in X;

(2) Q is a deformation retract of the neighborhood NX(Q ).

Proof. — In view of Lemma 7.3, it follows from condition (E4) of a small
extension that the neighborhood NX(Q ) is locally 3-convex in X. Since it is also
connected, part (1) of the corollary follows. Part (2) follows similarly from condi-
tion (E5).

Given a convex subcomplex Q in a systolic complex X, define a system
Bn = Bn(Q , X) of combinatorial balls in X of radii n centered at Q as B0 := Q
and Bn+1 := NX(Bn) for n ≥ 0. From Corollary 7.4 and Lemma 7.2 we get

7.5. Corollary. — Let Q be a convex subcomplex in a systolic complex X. Then for

any natural n the ball Bn(Q , X) is a convex subcomplex in X. Any ball Bn(Q , X) is full

in X and contractible. It is also a deformation retract of the ball Bm(Q , X) for any m > n.

Finally, if X is k-systolic (for some k ≥ 6) then the ball Bn(Q , X) is also k-systolic.

For n ≥ 1, the sphere of radius n centered at a convex subcomplex Q is the
full subcomplex Sn(Q , X) in X spanned by the vertices at combinatorial distance
n from Q .
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For a convex subcomplex Q ⊂ X the boundary ∂Q is a subcomplex consisting
of all simplices σ ⊂ Q with Q σ �= Xσ . If f : Q → X denotes the inclusion map,
we have ∂Q = ∂f Q .

7.6. Lemma. — Let Q be a convex subcomplex in a systolic complex X and let

n ≥ 1 be a natural number. Then

(1) Bn(Q , X) is the full subcomplex of X spanned by the set of all vertices of X at

combinatorial distance ≤ n from Q ;

(2) Sn(Q , X) ⊂ Bn(Q , X);

(3) Sn(Q , X) is equal to the union of those simplices in the ball Bn(Q , X) which are

disjoint with Bn−1(Q , X);

(4) ∂Bn(Q , X) ⊂ Sn(Q , X).

Proof. — Observe that, by definition of balls, the vertex set of the ball
Bn(Q , X) is exactly the set of all vertices of X at combinatorial distance ≤ n
from Q . Since, by Corollary 7.5, the ball Bn(Q , X) is full in X, this proves (1).
Parts (2) and (3) follow from (1). In view of Lemma 7.3, part (4) follows from
property (E3) of small extension.

The next result will be often used in later sections, especially in establishing
properties of projection maps (onto convex subsets) and directed geodesics.

7.7. Lemma. — For any convex subcomplex Q in a systolic complex X and for any

simplex σ ⊂ NX(Q ) disjoint from Q , the intersection Q ∩ Res(σ, X) is a single simplex

of Q . Moreover, if σ ′ is a face of σ , then Q ∩ Res(σ, X) is a face of Q ∩ Res(σ ′, X).

Proof. — In view of Lemma 7.3, it follows from Corollary 5.5 that the
intersection Q ∩ Res(σ, NX(Q )) is a single simplex of Q . Since it is clear from
the definition of the neighborhood that Res(σ, X) ∩ Q = Res(σ, NX(Q )) ∩ Q ,
the first assertion follows. The second assertion is clear due to reversed inclusion
between residues of a simplex and its face.

7.8. Lemma. — Let Q ⊂ X be a convex subcomplex and let ρ be a simplex in

NX(Q ) disjoint with Q . Let σ = Q ∩ Res(σ, X) be the simplex as in Lemma 7.7. Then

the link of the subcomplex NX(Q ) at ρ has the form of a simplicial neighborhood of a single

simplex, namely [NX(Q )]ρ = NXρ
(σ).

Proof. — In view of Lemma 7.3, it follows from Lemma 5.3 that [NX(Q )]ρ =
N[NX(Q )]ρ(σ). But, since σ ⊂ Q , we have NX(σ) = NNX(Q )(σ) and hence also
N[NX(Q )]ρ(σ) = NXρ

(σ), which finishes the proof.
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For later applications, we state the specializations of Lemmas 7.7 and 7.8 to
the case of balls.

7.9. Corollary. — Let X be a systolic simplicial complex, Q a convex subcomplex

in X, and n ≥ 1 a natural number. Then for any simplex ρ of the sphere Sn(Q , X)

(1) the intersection Bn−1(Q , X) ∩ Res(ρ, X) is a single (nonempty) simplex of X;

(2) if σ = Bn−1(Q , X)∩Res(ρ, X) is the simplex as in (1), we have [Bn(Q , X)]ρ =
NXρ

(σ).

We now turn to the notion of strong convexity, a sharper variant of con-
vexity. This notion is intimately related with the concept of extra-tilability playing
a central role in our constructions in Sections 18–19. The definition is inspired by
the property of neighborhoods of convex subcomplexes described in Lemma 7.8.

7.10. Definition. — A subcomplex Q in a systolic simplicial complex X is strongly
convex if it is connected and for any simplex ρ of Q the link Q ρ coincides either with the

whole link Xρ or with the neighborhood NXρ
(σ) of some simplex σ ⊂ Xρ.

Since the neighborhoods of simplices have diameters ≤ 3, Lemma 3.7 implies
that links of a strongly convex subcomplex are 3-convex in the corresponding links
of X. In particular, this gives the following.

7.11. Corollary. — Every strongly convex subcomplex is convex.

Next corollary is an immediate consequence of Lemmas 7.6.4 and 7.8, and
of Corollary 7.5.

7.12. Corollary. — Let Q be a convex subcomplex in a systolic simplicial complex X.

Then the neighborhood NX(Q ) is strongly convex in X. Moreover, for any natural n ≥ 1 the

ball Bn(Q , X) is strongly convex in X.

8. Projections onto convex subcomplexes

In this section we define and study a natural map from a finite dimensional
systolic complex to its convex subcomplex, which we call projection. This map
resembles the projection of a CAT(0) space to its convex subset along the short-
est geodesics connecting points of the space with the subset. We introduce also
projection rays which are analogues of the above geodesics.

Given a simplicial complex K, we denote by K′ its first barycentric subdivi-
sion. For a simplex σ ⊂ K, we denote by bσ the barycenter of σ , a vertex in K′.
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We denote by distK the combinatorial distance (in the 1-skeleton of K) between
the vertices of K. We also use a simplified notation BnQ , SnQ for balls Bn(Q , X)

and spheres Sn(Q , X), X being fixed throughout the whole section. In particular,
under this convention, the neighborhood NX(Q ) is denoted by B1Q .

Given a convex subcomplex Q in a systolic complex X, define an elementary

projection πQ : (B1Q )′ → Q ′ between the barycentrically subdivided complexes by
putting

πQ (bσ) =
{

bσ∩Q if σ ∩ Q �= ∅
bτ if σ ∩ Q = ∅, where τ = Res(σ, X) ∩ Q

and extending simplicially. By Lemmas 7.2.3 and 7.7, πQ is a well defined sim-
plicial map. It is also clear that πQ restricted to Q ′ is the identity on Q ′, i.e. πQ

is a retraction.

Remark. — One verifies that, viewing B1Q as a small extension domain EQ
for the inclusion map Q → X, the elementary projection πQ coincides with the
deformation retraction EQ → Q constructed in Section 5.

8.1. Lemma. — Let Q be a convex subcomplex in a systolic complex X, and let

σ ⊂ (B1Q )′ be a simplex not contained in Q ′. Then πQ (σ) ⊂ (∂Q )′.

Proof. — Since (∂Q )′ is a full subcomplex in Q ′, it is sufficient to prove
the lemma for vertices. A vertex in (B1Q )′ not contained in Q ′ has the form bτ

for some simplex τ ⊂ B1Q not contained in Q . Let ρ ⊂ Q be the simplex given
by πQ (bτ) = bρ. By the definition of πQ , if τ intersects Q then τ − ρ ∈ Xρ and
if τ is disjoint with Q then τ ∈ Xρ. In any case it follows that Q ρ �= Xρ, hence
ρ ⊂ ∂Q and bρ ∈ (∂Q )′.

Denote by Pn
Q : (BnQ )′ → Q ′ the composition map πBn−1Q ◦ πBn−2Q ◦ ...

◦πB1Q ◦πQ and observe that Pn
Q extends Pm

Q if n > m. Denote then by PQ : X′ → Q ′

the union
⋃

n Pn
Q and call it the projection to Q . The first two parts of the next

fact follow from the properties of elementary extensions. Part (3) is true for any
simplicial map between two simplicial complexes.

8.2. Fact. — The projection PQ satisfies the following properties:

(1) PQ |Q ′ = idQ ′ ;
(2) if σ is a simplex of X′ not contained in Q ′ then PQ (σ) ⊂ ∂Q ;
(3) distQ ′(PQ (v), PQ (w)) ≤ distX′(v, w) for any vertices v, w ∈ X′.
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We turn to defining projection rays. To do this, we need the following vari-
ants of projection maps, between face posets rather than barycentric subdivisions.
For any convex subcomplex Q ⊂ X, and any simplex σ of X, put P̂Q (σ) = τ if
and only if PQ (bσ) = bτ , and similarly put π̂Q (σ) = τ if and only if πQ (bσ) = bτ .

Let Q ⊂ X be a convex subcomplex and let σ ⊂ SnQ . The projection

ray from σ to Q is the sequence σ = σ0, σ1, ..., σn of simplices in X given
by σk = π̂Bn−k+1Q (σk−1) for k = 1, ..., n. Equivalently, this sequence is given by
σk = P̂Bn−kQ (σ0).

Now we list obvious properties of projection rays.

8.3. Fact.

(1) Any two consecutive simplices σk, σk+1 in a projection ray are disjoint and
span a simplex of X.

(2) If σk and σm are simplices in a projection ray then for any vertices v ∈ σk

and w ∈ σm we have distX(v, w) = |k − m|.
(3) If σ0, ..., σn is a projection ray on Q then σk, σk+1, ..., σn, for any 0 < k < n,

is also a projection ray on Q .

A less obvious property, giving an intrinsic characterization of projection rays,
is

8.4. Lemma. — If σ0, ..., σn is a projection ray on Q then σ0, ..., σk, for any

0 < k ≤ n, is a projection ray on σk, where we view σk as a convex subcomplex of X.

Proof. — Note first that Bmσk ⊂ Bn−k+mQ for any 0 ≤ m < k. Since
Res(σk−m−1, X) contains σk−m, we have

σk−m ⊂ Res(σk−m−1, X) ∩ Bmσk ⊂ Res(σk−m−1, X) ∩ Bn−k+mQ = σk−m.

Thus all the inclusions above are equalities, so in particular

Res(σk−m−1, X) ∩ Bmσk = σk−m,

hence the lemma.

8.5. Corollary. — A projection ray in a systolic complex is uniquely determined by its

initial and final simplex.

8.6. Lemma. — Let σ and τ be two simplices in a systolic complex X such that

distX(v, w) = n for all vertices v ∈ σ and w ∈ τ . Then there is a face ρ ⊂ τ such that σ

is connected to ρ by a projection ray of form σ, σ1, ..., σn−1, ρ.

Proof. — The required projection ray corresponds to the projection P̂τ on
the subcomplex τ ⊂ X, with ρ = P̂τ(σ).
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9. Directed geodesics

In this section we introduce the notion of a directed geodesic in a locally
6-large simplicial complex. It is a sequence of simplices satisfying certain condition
that involves triples of consecutive simplices in the sequence, and is in this sense
local. The adjective “directed” tells that a directed geodesic is in general not sym-
metric, i.e. it fails to be a directed geodesics after reversing the order. We show
that in systolic complexes the local notion of a directed geodesic coinsides with
the global notion of a projection ray (introduced in Section 7). In Sections 10–12
we study further global properties of directed geodesics in systolic complexes.

9.1. Definition. — A sequence (σn) of simplices in a locally 6-large simplicial complex

X is a directed geodesic if it satisfies the following properties:

(1) any two consecutive simplices σi, σi+1 in the sequence are disjoint and span a simplex

of X;

(2) for any three consecutive simplices σi, σi+1, σi+2 in the sequence we have

Res(σi, Xσi+1) ∩ B1(σi+2, Xσi+1) = ∅.

Observe the lack of symmetry in condition (2), and the local nature of the
definition. It is clear that images of directed geodesics under covering maps, or
their lifts under such maps, are again directed geodesics. The next lemma shows
an alternative and simpler way to define directed geodesics in systolic complexes.

9.2. Lemma. — If X is a systolic complex then condition (2) in the definition of

a directed geodesic (Definition 9.1) can be replaced with the following condition:

Res(σi, X) ∩ B1(σi+2, X) = σi+1.(2’)

Proof. — Since Res(σi, Xσi+1) = Res(σi, X) ∩ Xσi+1 and B1(σi+2, Xσi+1) =
B1(σi+2, X) ∩ Xσi+1 , we get the inclusion

σi+1 ∗ [Res(σi, Xσi+1) ∩ B1(σi+2, Xσi+1)] ⊂ Res(σi, X) ∩ B1(σi+2, X)

(where σ ∗ ∅ = σ ). Hence (2’) implies (2). To prove the converse, suppose that
Res(σi, X) ∩ B1(σi+2, X) contains a vertex v not in σi+1. Then (2) implies that v is
not in the link Xσi+1 , and hence also not in the residue Res(σi+1, X). Moreover,
both σi and σi+2 are contained in Res(v, X) ∩ Res(σi+1, X), which is a simplex
according to Lemma 7.7. Thus σi and σi+2 span a simplex, but this is impossible
due to condition (2) and the fact that X is flag.

Existence of many finite directed geodesics is implied by the following two
results. We will not deal with infinite directed geodesics in this paper.



SIMPLICIAL NONPOSITIVE CURVATURE

9.3. Lemma. — Each projection ray in a systolic simplicial complex is a directed

geodesic.

Proof. — By Fact 8.3.1, a projection ray σ0, ..., σn satisfies condition (1) of
Definition 9.1. In view of Lemma 9.2, it is now sufficient to check condition (2’)
from this lemma. To do this, note that any subsequence σi, σi+1, σi+2 is a projection
ray on σi+2 (see Fact 8.3.3 and Lemma 8.4). By the definition of a projection ray
and by Lemma 7.7 we get Res(σi, X)∩B1(σi+2, X) = σi+1, and the lemma follows.

9.4. Corollary. — Any sequence of simplices in a locally 6-large complex X that lifts

to a projection ray in the universal cover of X is a directed geodesic.

We now turn to proving that (lifts of ) directed geodesics coincide with pro-
jection rays. We start with a preparatory result.

9.5. Lemma. — Let X be a systolic complex, Q its convex subcomplex, and suppose

that σ is a simplex in the sphere S1(Q , X). Denote by τ the simplex Res(σ, X)∩Q . Then

[B1(τ, X)]σ = [B1(X, Q )]σ .

Proof. — Since τ ⊂ Q , it is clear that [B1(τ, X)]σ ⊂ [B1(X, Q )]σ . To prove
the converse inclusion, note that since all the involved complexes are full in X, it
is sufficient to show that if v is a vertex in [B1(X, Q )]σ then v ∈ [B1(τ, X)]σ . Let
v be any vertex of [B1(X, Q )]σ . If v ∈ Q then v ∈ Res(σ, X) ∩ Q = τ , and hence
v ∈ [B1(τ, X)]σ . If v /∈ Q then σ ∗ v ⊂ S1(Q , X) and thus Res(σ ∗ v, X) ∩ Q �= ∅.
Moreover, by Lemma 7.7 we have Res(σ ∗ v, X) ∩ Q ⊂ Res(σ, X) ∩ Q = τ , and
hence v ∈ B1(τ, X). Since the ball B1(τ, X) is full in X, we get that σ∗v ⊂ B1(τ, X)

and thus again v ∈ [B1(τ, X)]σ , hence the lemma.

9.6. Proposition. — A directed geodesic σ0, ..., σn in a systolic complex is a projection

ray on its final simplex σn.

Proof. — By Lemma 9.2 we have Res(σn−2, X) ∩ B1(σn, X) = σn−1, so σn−2,

σn−1, σn is a projection ray on σn. Suppose inductively that for some 1 ≤ k ≤ n−2
the sequence σk, σk+1, ..., σn is a projection ray on σn. We will prove that the
sequence σk−1, σk, ..., σn is also a projection ray on σn. To do this, we need to show
that (1) σk−1 is disjoint with the ball Bn−k(σn, X) and (2) Res(σk−1, X)∩ Bn−k(σn, X)

= σk.
By Lemma 9.5 we have

[B1(σk+1, X)]σk = [B1(Bn−k−1(σn, X), X)]σk = [Bn−k(σn, X)]σk .
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We then get

σk−1 ∩ [Bn−k(σn, X)]σk = σk−1 ∩ [B1(σk+1, X)]σk = ∅,

where the last equality follows from the definition of directed geodesic applied to
the simplices σk−1, σk, σk+1. Since the ball Bn−k(σn, X) is full in X and σk−1 ∗ σk is
a simplex of X, this implies (1). Moreover, since X is flag and balls in X are full,
we get

B1(σk, X) ∩ B1(σk+1, X) = σk ∗ [B1(σk+1, X)]σk = σk ∗ [Bn−k(σn, X)]σk(9.6.1)

= B1(σk, X) ∩ Bn−k(σn, X).

By Lemma 7.7, the intersection Res(σk−1, X) ∩ Bn−k(σn, X) is a simplex containing
σk, so in particular this intersection is contained in the ball B1(σk, X). Conse-
quently, by applying (9.6.1) we have

Res(σk−1, X) ∩ Bn−k(σn, X) = Res(σk−1, X) ∩ Bn−k(σn, X) ∩ B1(σk, X)

= Res(σk−1, X) ∩ B1(σk+1, X) ∩ B1(σk, X)

= σk,

where the last equality follows from Lemma 9.2. This shows that σk−1, σk, ..., σn is
a projection ray on σn, hence the proposition.

Proposition 9.6 and Lemma 9.3 show that the sets of finite directed geodesics
and of projection rays coincide. As a consequence of Corollary 8.5 and Lemma 8.6
we obtain therefore the following.

9.7. Corollary. — Given vertices v, w in a systolic complex there is exactly one directed

geodesic from v to w.

As an easy consequence of Fact 8.3.2 we get also the following.

9.8. Corollary. — Let v, w be two vertices in a systolic complex X such that

distX(v, w) = n. Then the directed geodesic from v to w consists of n + 1 simplices.

10. Directed geodesics and convexity

In this section we study the behavior of directed geodesics with respect to
convex subcomplexes in systolic complexes. We also obtain several more properties
of convex subcomplexes.

In the proofs in this section we will often use (without referring explicitly to)
both assertions of Lemma 7.7.
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10.1. Lemma. — Let Q be a convex subcomplex in a systolic complex X. Let

Bn = Bn(Q , X) and Sn = Sn(Q , X) be the systems of balls and spheres in X centered

at Q . For any directed geodesic σ1, σ2, σ3 and for any n ≥ 0:

(1) if σ1 ⊂ Bn and σ2 ⊂ Sn+1 then σ3 ⊂ Sn+2;

(2) if σ1 ⊂ Bn and σ2 intersects Bn but is not contained in Bn, then σ3 ∩ Bn = ∅;

(3) if σ1 intersects Bn but is not contained in Bn, and if σ2 ∩ Bn = ∅, then σ3 is not

contained in Bn+1.

Proof. — To prove (1), observe that σ3 ∩ Bn = ∅, since otherwise both sim-
plices σ3 ∩ Bn and σ1 are faces of the simplex Res(σ2, X) ∩ Bn, and this contra-
dicts condition (2’) from Lemma 9.2. Suppose that τ = σ3 ∩ Sn+1 is not empty.
It is a face of σ since, by definition, the sphere Sn+1 is full in X. Note that
both simplices σ1 and Res(σ2 ∗ τ, X) ∩ Bn are faces of the simplex Res(σ2, X) ∩ Bn.
It follows that the intersection B1(τ, X) ∩ Res(σ1, X) contains the join
σ2 ∗ [Res(σ2 ∗ τ, X) ∩ Bn], and hence is larger than σ2 (here we use flagness of X).
Thus the same is true for the intersection B1(σ3, X)∩Res(σ1, X), contradicting con-
dition (2’) of Lemma 9.2. This implies that σ3 is disjoint with both Bn and Sn+1,
hence it is contained in Sn+2.

To prove (2), suppose that the intersection τ := σ3 ∩ Bn is not empty. It is
then a face of σ3 (because Bn is full) and we denote it by τ . Similarly, using the
fact that spheres are full in X, denote by ρ the simplex Sn+1 ∩ σ2. Observe that
both σ1 and τ are faces of the simplex Res(ρ, X) ∩ Bn, which clearly contradicts
condition (2’) of Lemma 9.2.

To prove (3), note that by the assumptions we get that σ2 ⊂ Sn+1.
If τ = σ3 ∩ Bn �= ∅ then both τ and σ1 are the faces of the simplex

Res(σ2, X) ∩ Bn, contradicting condition (2’) of Lemma 9.2. If σ3 ⊂ Sn+1 then
the simplex Res(σ2 ∗ σ3, X) ∩ Bn and the simplex σ1 ∩ Bn are faces of the simplex
Res(σ2, X) ∩ Bn, which again contradicts (2’).

Since σ3 is disjoint with Bn and not contained in Sn+1, it is not contained
in Bn+1, hence the lemma.

Remark. — The following uniform interpretation of the three parts of
Lemma 10.1 provides the idea for proving the next result. A simplex σ1 is closer

to Q than a simplex σ2 if any of the assumptions from parts (1)–(3) is satisfied.
The lemma says that if σ1 is closer than σ2 then σ2 is closer than σ3.

10.2. Proposition. — Let Q be a convex subcomplex in a systolic complex X, and

let σ0, ..., σn be a directed geodesic in X such that σ0 ⊂ Q and σn ⊂ Q . Then for each

0 < i < n we have σi ⊂ Q .

Proof. — Suppose that some of the simplices in the directed geodesic is not
contained in Q . Then there is i such that σi ⊂ Q and σi+1 is not contained
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in Q . Applying Lemma 10.1 inductively, we get that σk is not contained in Q
for all k > i. This contradicts the assumption that σn ⊂ Q , hence the proposi-
tion.

10.3. Lemma. — The intersection of any family of convex subcomplexes in a given

systolic complex is a convex subcomplex.

Proof. — Since any convex subcomplex is locally 3-convex, it follows from
Fact 3.3.2 that the intersection of convex subcomplexes is locally 3-convex. It re-
mains to show that this intersection is connected.

Let v, w be any two vertices in the intersection. By Lemma 8.6, these vertices
are connected by a projection ray. Since, according to Lemma 9.3, this projection
ray is a directed geodesic, it follows from Proposition 10.2 that all its simplices
are contained in the intersection. Consequently, since the intersection of full sub-
complexes is full, there is a path in (the 1-skeleton of ) the intersection between v
and w, hence connectivity.

10.4. Lemma. — For each subcomplex K of a systolic complex X there is the smallest

convex subcomplex conv(K) in X that contains K (we will call it the convex hull of K in X).

Moreover, if K is bounded (with respect to the combinatorial distance), its convex hull is also

bounded.

Proof. — Since K is contained in at least one convex subcomplex of X,
namely in X itself, we define conv(K) to be the intersection of all convex subcom-
plexes in X containing K. According to Lemma 10.3, this intersection is convex.
If K is bounded, it is contained in some ball in X centered at a vertex. Since,
by Corollary 7.5, this ball is convex, the convex hull of K is clearly bounded.

11. Fellow traveller property

In this section we prove that directed geodesics in a systolic complex satisfy
fellow traveller property. We show this property in a setting suitable for applications
in Section 13, where we prove that systolic groups are biautomatic.

Let X be a systolic simplicial complex and let v, w be vertices in X. An
allowable geodesic from v to w in the 1-skeleton X(1) is an infinite sequence (ui)

∞
i=0

of vertices of X such that if v = σ0, σ1, ..., σn = w is the directed geodesic in X
from v to w then

(1) ui ∈ σi for 0 ≤ i ≤ n (in particular, u0 = v and un = w);
(2) ui = un = w for i > n.
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Fact 8.3.1 (together with Proposition 9.6) implies that the sequence of vertices in
an allowable geodesic, before it becomes constant, forms a polygonal path in the
1-skeleton X(1). Moreover, Fact 8.3.2 implies the following.

11.1. Fact. — If distX(v, w) = n and (ui)
∞
i=0 is an allowable geodesic from v

to w, then for 0 ≤ j < k ≤ n we have distX(uj, uk) = k − j, i.e. the subsequence
(ui)

n
i=0 determines a geodesic in X(1).

We will prove the following variant of the fellow traveller property.

11.2. Proposition. — Let X be a systolic complex and suppose that (ui)
∞
i=0 and (ti)∞

i=0
are allowable geodesics in X(1) from v to w and from p to q respectively. Then for each i ≥ 0
we have

distX(ui, ti) ≤ 3 · max[distX(v, p), distX(w, q)] + 1.

Remark. — Note that the fellow traveller property does not in general hold
for arbitrary geodesics in the 1-skeleton of a systolic complex, as can be easily
observed for example in the triangulation of the euclidean plane by congruent
equilateral triangles.

The proof of Proposition 11.2 is based on Lemma 11.3, the first part of
which we prove at the end of this section, and the second in Section 12. In this
lemma we use a convention that if σ0, ..., σn is a directed geodesic then it extends
to the infinite sequence (σi)

∞
i=0 by putting σi = σn for i > n. We denote by X′ the

first barycentric subdivision of a simplicial complex X and by bσ the barycenter
of a simplex σ ⊂ X (which is a vertex in X′).

11.3. Lemma. — Let X be a systolic complex and let (σi)
n
i=0, (τi)

m
i=0 be directed

geodesics in X.

(1) If σn = τm then distX′(bσi, bτi) ≤ 2 · distX′(bσ0, bτ0) for each i ≥ 0.

(2) If σ0 = τ0 is a vertex then distX′(bσi, bτi) ≤ distX′(bσn, bτm) for each i ≥ 0.

Proof of Proposition 11.2 (assuming Lemma 11.3). — Let (σi)
n
i=0, (τi)

m
i=0 and

(ρi)
l
i=0 be the directed geodesics in X from v to w, from p to q and from p

to w respectively. By Lemma 11.3, for each i ≥ 0 we have distX′(bσi, bρi) ≤
2 · distX′(bσ0, bρ0) and distX′(bρi , bτi) ≤ distX′(bρl , bτm). It clearly implies that for each
i ≥ 0

distX′(bσi, bτi) ≤ 3 · max[distX′(bσ0, bτ0), distX′(bσn, bτm)].
Since for any vertices x, y belonging to simplices α, β in X respectively we have

2 · distX(x, y) ≤ distX′(bα, bβ) + 2 and distX′(x, y) = 2 · distX(x, y),

the proposition follows.
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Proof of Lemma 11.3.1. — Under assumptions of the lemma, σ0 ∈ Sn(σn, X)

and τ0 ∈ Sm(τm, X) = Sm(σn, X). Suppose n ≥ m. Then distX′(bσ0, bτ0) ≥ 2n−2m. On
the other hand, applying Fact 8.2 to the convex subcomplex Q = Bm−i(σn, X) =
Bm−i(τm, X) (or Q = σn = τm if i > m) we get distX′(bσi+n−m, bτi) ≤ distX′(bσ0, bτ0). This
implies the following estimate:

distX′(bσi, bτi) ≤ distX′(bσi, bσi+n−m) + distX′(bσi+n−m, bτi)

≤ distX′(bσ0, bτ0) + (2n − 2m) ≤ 2 · distX′(bσ0, bτ0),

which finishes the proof.

12. Inverse fellow traveller property

In this section we study properties of the family of all directed geodesics
started at a fixed vertex p in a finite dimensional systolic complex X. In particular,
we obtain the proof of Lemma 11.3.2.

Let X be a systolic complex and let p be a vertex in X. We say that
a simplex τ ⊂ X is accessible from p if there exists a directed geodesic from p
to τ . By Fact 8.3.2, to be accessible from p, a simplex τ must be contained in
some sphere Sn(p, X). Not all simplices from such spheres are accessible from p.
However, it follows from Corollary 9.7 that every vertex in X distinct from p is
accessible from p. Let τ ⊂ Sn+1(σ, X) be a simplex accessible from p. Denote by
cp(τ) the simplex that precedes τ in the directed geodesic from p to τ . More
precisely, if σ0, σ1, ..., σn, σn+1 is the directed geodesic from p to τ (i.e. σ0 = p and
σn+1 = τ ) then we put cp(τ) := σn.

We use the notation concerning barycentric subdivisions as in the previous
section.

12.1. Proposition. — For any systolic complex X, any vertex p in X and any n ≥ 0
there is a simplicial map cn

p : [Bn+1(p, X)]′ → [Bn(p, X)]′ satisfying the following properties:

(1) cn
p restricted to [Bn(p, X)]′ is the identity;

(2) cn
p(bτ) = bcp(τ) for any simplex τ ⊂ Sn+1(σ, X) that is accessible from p.

The proof of Proposition 12.1 requires several preparatory results. Before
getting to them we first give the proof of Lemma 11.3.2 based on the proposition.

Proof of Lemma 11.3.2. — Let (σi) and (τi) be the sequences as in the lemma.
Consider the maps Ci

σ0
: X′ → [Bi(σ0, X)]′ given by

Ci
σ0

:=
∞⋃

k=1

ci+k
σ0

◦ ci+k−1
σ0

◦ ... ◦ ci
σ0



SIMPLICIAL NONPOSITIVE CURVATURE

and note that we have Ci
σ0

(bσn) = bσi and Ci
σ0

(bτm) = bτi . Since the maps Ci
σ0

are
simplicial map, they do not increase combinatorial distances, hence the lemma.

The next series of results prepares the background for proving Prop-
osition 12.1.

12.2. Lemma. — If τ is accessible from p and � is a face of τ , then � is accessible

from p and cp(�) = cp(τ).

Proof. — Let p, σ1, ..., σn−1, τ be the directed geodesic from p to τ . It is suffi-
cient to show that p, σ1, ..., σn−1, � is also a directed geodesic. To do this, we only
need to check the condition for directed geodesic at the final triple σn−2, σn−1, �.
It follows easily by observing that B1(�, Xσn−1) ⊂ B1(τ, Xσn−1).

12.3. Corollary. — Let τ1, τ2 be simplices that are accessible from p and suppose they

intersect. Then their corresponding directed geodesics from p coincide except at the last simplices.

In other words, we then have cp(τ1) = cp(τ2).

12.4. Lemma. — Suppose e = (v1, v2) is a 1-simplex in Sn(p, X) not accessible from

p and denote by σ0 the last common simplex in the directed geodesics from p to v1 and v2.

Denote by σ0, σ
1
1 , σ 1

2 , ..., σ 1
n−1, v1 and σ0, σ

2
1 , σ 2

2 , ..., σ 2
n−1, v2 the directed geodesics from σ0

to v1 and v2 (which are parts of the corresponding geodesics from p). Suppose that the projection

ray from σ0 on e terminates at v1 (it terminates at some vertex of e since e is not accessible

from p, and hence also not accessible from σ0). Then (1) σ 2
1 ⊂ σ 1

1 , (2) σ 1
2 ∩ σ 2

2 = ∅ and

(3) σ 1
2 , σ 2

2 span a simplex of X.

Proof. — Note that by our assumptions the directed geodesic σ0, σ
1
1 , σ 1

2 , ...,

σ 1
n−1, v1 is the projection ray from σ0 on e. Therefore we have

σ 1
1 = Res(σ0, X) ∩ Bn−1(v1, X) = Res(σ0, X) ∩ Bn−1(e, X) and

σ 2
1 = Res(σ0, X) ∩ Bn−1(v2, X) ⊂ Res(σ0, X) ∩ Bn−1(e, X),

hence (1).
To prove (2), suppose that σ 1

2 ∩σ 2
2 = α �= ∅. Then, according to Lemma 12.2,

σ0, σ
1
1 , α and σ0, σ

2
1 , α are directed geodesics. Moreover, these geodesics are distinct

because σ 1
1 �= σ 2

1 , which contradicts uniqueness (Corollary 8.5 and Proposition 9.6).
To prove (3), note that in view of (1) we have

σ 1
2 = Res

(
σ 1

1 , X
) ∩ Bn−2(e, X) ⊂ Res

(
σ 2

1 , X
) ∩ Bn−2(e, X) and

σ 2
2 = Res

(
σ 2

1 , X
) ∩ Bn−2(v2, X) ⊂ Res

(
σ 2

1 , X
) ∩ Bn−2(e, X),

where the first inclusion follows from (1) and second from the fact that v2 ⊂ e.
By Corollary 7.9.1, the intersection β = Res(σ 2

1 , X)∩ Bn−2(e, X) is a simplex in X,
and since we have σ 1

2 , σ 2
2 ⊂ β, the lemma follows.
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12.5. Lemma. — Suppose e = (v1, v2) is a 1-simplex in Sn(p, X) not accessible

from p. Then the simplices cp(v1) and cp(v2) span a simplex of X.

Proof. — As in the statement of Lemma 12.4, denote by σ0 the last com-
mon simplex in the directed geodesics from p to v1 and v2. Denote also by
σ0, σ

1
1 , σ 1

2 , ..., σ 1
n−1, v1 and σ0, σ

2
1 , σ 2

2 , ..., σ 2
n−1, v2 the directed geodesics from σ0 to

v1 and v2 (which are parts of the corresponding geodesics from p), and assume
(without loss of generality) that the first of them is the projection ray from σ0

on e.

Claim 1. — Let σ 1
1 − σ 2

1 be the face of the simplex σ 1
1 spanned by the

vertices not contained in σ 2
1 . Then σ 1

1 − σ 2
1 ⊂ Sn(v2, X).

To prove Claim 1, note that for any vertex u ∈ σ 1
1 −σ 2

1 we have the estimate

distX(u, v2) ≤ distX
(
u, σ 2

1

) + distX
(
σ 2

1 , v2

) = 1 + (n − 1) = n.

If distX(u, v2) = n − 1 for some u ∈ σ 1
1 − σ 2

1 , then u ∈ Res(σ0, X) ∩ Bn−1(v2, X) = σ 2
1 ,

a contradiction.

A similar argument based on Claim 1 and the fact that σ 1
1 − σ 2

1 and σ 1
2

span a simplex in X gives the following.

Claim 2. — For k = 2, 3, ..., n − 1 we have σ 1
k ⊂ Sn−k+1(v2, X).

Returning to the proof of Lemma 12.5, we will show that for k =1, 2, ..., n−1
the simplices σ 1

k , σ 2
k span a simplex of X. The assertion holds for k = 1, 2 due to

Lemma 12.4. Suppose, by induction, that σ 1
k , σ 2

k span a simplex. Then both σ 1
k+1

and σ 2
k are contained in the intersection Res(σ 1

k ) ∩ Bn−k(v2, X) which is a simplex
of X (the first inclusion is provided by Claim 2). Consequently, both simplices σ 1

k+1
and σ 2

k+1 are contained in Res(σ 2
k , X)∩Bn−k−1(e, X), which is also a simplex of X,

hence σ 1
k+1 and σ 2

k+1 span a simplex.
This shows that the simplices cp(v1) = σ 1

n−1 and cp(v2) = σ 2
n−1 span a simplex

of X, as required.

12.6. Lemma. — For any simplex τ ⊂ Sn(p, X) the family {cp(v) : v is a vertex

of τ} of simplices spans a simplex in Sn−1(p, X).

Proof. — Observe first that any two simplices cp(v1), cp(v2) from the family
span a simplex. If (v1, v2) is a 1-simplex not accessible from p, this is due to
Lemma 12.5. Otherwise this follows from the equality cp(v1) = cp(v2) implied by
Lemma 12.2.
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Since the complex X is flag and the sphere Sn−1(p, X) is a full subcomplex,
the above observation implies that the whole family spans a simplex of this sphere.

For a simplex τ ⊂ Sn(p, X) not accessible from p let cp(τ) be the simpli-
cial span of the family of simplices {cp(v) : v is a vertex of τ}. By Lemma 12.2,
if τ is a simplex accessible from σ then the simplicial span of the set {cp(v) :
v is a vertex of τ} equals cp(τ) (as defined at the beginning of the section). Thus
the above definition of cp(τ) applies to all simplices τ ⊂ Sn(p, X). In particular,
this implies the following.

12.7. Corollary. — If τ ⊂ Sn(p, X) is a simplex and ρ is a face of τ then cp(ρ)

is a face of cp(τ).

12.8. Lemma. — If v ∈ Sn−1(p, X) and w ∈ Sn(p, X) are vertices that span a

1-simplex e then the simplex cp(w) and the vertex v span a simplex in Sn−1(p, X).

Proof. — Since the intersection Res(w, X) ∩ Sn−1(p, X) is a simplex of X
(Corollary 7.9.1), the lemma follows by observing that both cp(w) and v are con-
tained in this intersection.

An argument similar to that in Lemma 12.6 gives the following.

12.9. Corollary. — If τ ⊂ Bn(p, X) is any simplex then the family of simplices

{cp(v) : v is a vertex of τ ∩ Sn(p, X)} ∪ {τ ∩ Bn−1(p, X)} spans a simplex in Bn−1(p, X).

Proof of Proposition 12.1. — In view of Corollary 12.9, for any simplex τ ⊂
Bn+1(p, X) the simplicial span of the family {cp(v) : v is a vertex of τ∩Sn+1(p, X)}∪
{τ ∩ Bn(p, X)} is a simplex. Denote this simplex by ĉn

p(τ) and note that it is con-
tained in Bn(p, X). Put cn

p(bτ) to be the barycenter of ĉn
p(τ), and note that this

defines the simplicial map [Bn+1(p, X)]′ → Bn(p, X) (between the first barycentric
subdivisions) which we also denote cn

p . It follows directly from the definition, that
cn
p satisfies assertions (1) and (2) of the proposition.

13. Systolic groups are biautomatic

We refer the reader to [ECHLPT] for the background on biautomatic groups.
Biautomaticity implies various algorithmic and geometric properties of a group, in
particular semihyperbolicity [AB] and its consequences.

13.1. Theorem. — Let G be a group acting simplicially, properly discontinuously and

cocompactly on a systolic simplicial complex X. Then G is biautomatic.
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Proof. — The proof is based on the fact that directed geodesics in X are
recognizable in local terms and satisfy fellow traveller property. Specifically, we
will construct a finite symmetric subset A ⊂ G generating G as a semigroup, and
a language L over A (whose strings are closely related to some directed geodesics
in X) such that

(1) L is regular;
(2) the canonical map L → G is surjective;
(3) L satisfies the 2-sided fellow traveller property.

To prove that L is regular, we shall construct a nondeterministic finite state au-
tomaton for which L is the accepted language.

Given a systolic group G acting on the corresponding complex X, put K =
G\X′, where X′ is the barycentric subdivision of X. Since G acts on X′ without
inversions (i.e. if an element g ∈ G fixes a simplex of X′ then it fixes all vertices
in this simplex), K is a multisimplicial complex (simplices are embedded in K but
a set of vertices may span more than one simplex). Moreover, since the action of
G on X is cocompact, K is finite.

Generating set A . — Choose a set of representatives V0 for the family of G-
orbits in the vertex set V(X′) (with respect to the induced action of G on this
set). For a vertex v ∈ V(X′) we shall denote by v̄ ∈ V0 the representative of its
G-orbit. For any v ∈ V(X′) define the set Λv := {g ∈ G : v = gv̄} and call it the set

of labels of v.

13.2. Fact. — Λv = g · Gv̄ = Gv · g for any g ∈ Λv, where Gv̄ and Gv are the
stabilizers of the corresponding vertices in G.

Let E(X′) be the set of all pairs (v, w) ∈ V(X′) × V(X′) such that v, w span
a 1-simplex of X′. For any pair (v, w) ∈ E(X′) put Λv,w := Λ−1

v · Λw. Call the
family Λ := {Λv,w : (v, w) ∈ E(X′)} the multilabelling on E(X′).

13.3. Lemma. — (1) Λw,v = Λ−1
v,w.

(2) Multilabelling Λ on E(X′) is G-invariant, i.e. Λgv,gw = Λv,w for any (v, w) ∈
E(X′) and any g ∈ G.

(3) For a fixed v0 ∈ V0 the set

A := [
⋃

{Λv,w : (v, w) ∈ E(X′)} ∪ Gv0] \ {1}

(where 1 is the unit of G) is a finite symmetric set generating G as a semigroup.
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Proof. — Parts (1) and (2) are obvious. To prove (3), observe that by G-
invariance multilabelling Λ on E(X′) induces the multilabelling on the set EK of
pairs of vertices that span a 1-simplex of K (we will denote this induced labelling
also by Λ). Thus the finiteness of A follows from finiteness of K and from finite-
ness of the label sets Λv,w, as well as from finiteness of the stabilizers of vertices
in X′ (implied by proper discontinuity of the action of G on X). The fact that
A is symmetric follows from part (1). It remains to prove that A generates G as
a semigroup.

Let g ∈ G be arbitrary. Let v0, v1, ..., vn = gv0 be the sequence of vertices
in a polygonal path in the 1-skeleton of X′. For each vi choose a label gi ∈ Λvi

with the only restriction that gn = g. Put λi := g−1
i−1gi for i = 1, ..., n and note that

g = g0λ1λ2...λn. Since g0 ∈ Λv0 = Gv0 and λi ∈ Λvi−1,vi , the lemma follows.

Language L . — Fix V0 as above, a vertex v0 ∈ V0, and take A to be the
generating set as in Lemma 13.3.3. We define a language L over the alphabet
A by describing, for arbitrary g ∈ G, the set of all strings in L that are mapped
to g through the evaluation map L → G.

Let σ0, σ1, ..., σn−1, σn be the directed geodesic in X from v0 to gv0. It induces
the sequence

σ0, σ0 ∗ σ1, σ1, σ1 ∗ σ2, ..., σn−1, σn−1 ∗ σn, σn

of simplices, and consequently the sequence b0, b1, ..., b2n of vertices in X′ being
the barycenters of the simplices in the previous sequence. Clearly, this sequence
corresponds to a polygonal path connecting v0 to gv0 in the 1-skeleton of X′.
Consider all strings over A defined in terms of the path b0, b1, ..., b2n as follows.
For i = 0, 1, ..., 2n choose a label gi ∈ Λbi arbitrarily, with the only restriction that
g2n = g. For i = 1, 2, ..., n put λi := g−1

i−1gi and take the string g0λ1...λ2n with omitted
occurrences of the unit element of G. Note that for g = 1 this construction gives
only the nullstring ε. Take as L the set of all such strings, for all g ∈ G.

It is clear from the description of L and from the existence of directed
geodesics in X between any two vertices, that the evaluation map L → G is
surjective. To prove fellow traveller property for L , consider the map ϕ : G → X
given by ϕ(g) := gv0 and note that it is a quasi-isometry. Note also that paths in
the Cayley graph C(G,A ) corresponding to the strings of L are, by definition,
mapped through ϕ uniformly close to the appropriate directed geodesics in X,
where the distance is controlled by the diameter of the (finite due to cocompactness
of G) set V0. Thus the language L inherits the 2-sided fellow traveller property
from the set of directed geodesics in X (Proposition 11.2). We omit straightforward
details of this argument.

To get the fact that G is biautomatic, it remains to prove that the language
L is regular.
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Finite state automaton. — Consider a nondeterministic finite state automaton M
defined as follows. The unique start state in M is the vertex v ∈ K corresponding
to the vertex v0 ∈ X′ through the quotient map X′ → K. Other states are the
pairs (v, h) : h ∈ Gv0 and the triples (u, w, λ) : (u, w) ∈ E(K), λ ∈ Λu,w. The accept
states in M are the state (v, 1) and the states of form (u, w, λ) with w = v.

There are three kinds of arrows in M.

(1) For each h ∈ Gv0 there is an arrow labelled h from the start state v to
the state (v, h).

(2) For each u ∈ V(K) such that (v, u) ∈ E(K) and for each λ ∈ Λv,u there
is an arrow labelled λ from each of the states (v, h) to the state (v, u, λ).

(3) The third kind of arrows requires longer description. Suppose u, w, y are
the vertices of K such that (u, w) ∈ E(K) and (w, y) ∈ E(K), and suppose
λ ∈ Λu,w and µ ∈ Λw,y. Let ū, w̄, ȳ be the representatives in V0 of the
G-orbits of these vertices. Note that then we have (λ−1ū, w̄) ∈ E(X′) and
(w̄, µȳ) ∈ E(X′). Denote by ρ, σ, τ respectively the simplices in X whose
barycenters are λ−1ū, w̄, µȳ. There is an arrow labelled µ from the state
(u, w, λ) to the state (w, y, µ) if and only if one of the following two
conditions holds:
(i) ρ and τ are disjoint and span σ ;
(ii) σ is a proper face in both ρ and τ and

Res(ρσ, Xσ ) ∩ B1(τσ, Xσ) = ∅.

Denote by LM the language accepted by the automaton M. The fact that
L ⊂ LM follows easily from the description of strings in L . To prove the converse
inclusion, consider any path of arrows in the automaton M that gives an accepted
string of the language LM. This path is uniquely determined by the corresponding
sequence of states, and we denote this sequence by

u0, (u0, g0), (u0, u1, λ1), ..., (un−1, un, λn),

where u0 = un = v, (ui−1, ui) ∈ E(K), g0 ∈ Gv0 and λi ∈ Λui−1,ui for 1 ≤ i ≤ n.
A string in LM obtained from this path is g0λ1...λn, where the occurrences of the
unit 1 ∈ G are omitted.

For each 0 ≤ i ≤ n denote by gi ∈ G the product g0λi...λi and by ūi the
vertex in V0 representing the G-orbit in V(X′) corresponding to ui. For each such
i put bi := giūi and denote by σi the simplex of X with barycenter bi. Observe
that any triple bi−1, bi, bi+1 can be expressed as

giλ
−1
i ūi−1, giūi, giλi+1ūi+1

and thus the triple ρ, σ, τ of simplices with barycenters λ−1
i ūi−1, ūi, λi+1ūi+1 is

mapped by gi to the triple σi−1, σi, σi+1. By the description of arrows in M, and



SIMPLICIAL NONPOSITIVE CURVATURE

by the facts that σ0 = v0 and σn = gnv0 are the vertices and that each gi is a sim-
plicial automorphism of X, we get that if i is odd then σi−1 and σi+1 are disjoint
and span σi, while if i > 0 is even then σi is a proper face in both σi−1 and σi+1

and

Res((σi−1)σi , Xσi) ∩ B1((σi+1)σi , Xσi) = ∅.

In particular, it follows that n is even and that for any even 0 < i < n we have

Res(σi−2, Xσi) ∩ B1(σi+2, Xσi) = ∅.

Thus the sequence σ0, σ2, σ4, ..., σn is a directed geodesic in X from v0 to gnv0,
and σ2i+1 = σ2i ∗ σ2i+2 for any 0 ≤ i < n/2. Since we also have gi ∈ Λbi for
0 ≤ i ≤ n, the string g0λ1...λn (with occurrences of 1 deleted) has the form as in
the description of the language L , i.e. it belongs to L . This proves the regularity
of L .

14. Systolic versus CAT(κ)

In this section we discuss the relationship between k-systolic conditions and
comparison CAT(κ) conditions for various metrics on simplicial complexes. As
a main reference on CAT(κ) spaces we use [BH].

We start with few remarks concerning the standard piecewise euclidean met-
rics on simplicial complexes. In these metrics each simplex is isometric with the
regular euclidean simplex of the same dimension with side lengths equal 1. An
easy observation shows that in dimension 2 a simplicial complex X is systolic if
and only if it is CAT(0) with respect to the standard piecewise euclidean metric.
A local version of this observation says that X is locally 6-large if and only if it
is nonpositively curved.

It turns out that the equivalence of the two curvature conditions as above
does not hold in higher dimensions. To see a counterexample in dimension 3,
recall that the angle α in the regular 3-simplex between a 2-face and a 1-face
meeting at a vertex is less than π/3. Consider a simplicial complex X which is
the union of six 3-simplices defined as follows. Consider vertices vi and 1-simplices
ei with i ∈ Z/3Z and a 2-complex K given as

K =
⋃

i∈Z/3Z

(vi ∗ ei ∪ ei ∗ vi+1).

Take X to be the simplicial cone over K. X is easily seen to be 6-systolic, and on
the other hand it is not CAT(0) since the spherical link of X at the cone vertex



TADEUSZ JANUSZKIEWICZ, JACEK ŚWIA̧TKOWSKI

contains a closed geodesic of length 6α, which is less than 2π. Similar counterex-
amples can be constructed in any dimension n ≥ 3. This shows that 6-systolic
complexes are not necessarily CAT(0) for the standard piecewise euclidean metric.

The converse implication between the two conditions is also not true in
higher dimensions. Consider the n-dimensional simplicial complex Yn equal to the
simplicial join of an (n − 2)-dimensional simplex σ and the 1-dimensional cycle
consisting of five edges. Clearly, Yn is not 6-systolic, as its link at σ shows. On
the other hand, the dihedral angle βn in the regular n-simplex (between the faces
of codimension 1) grows to π/2 as n grows to infinity. In fact, βn > 2π/5 for all
n ≥ 4. This implies that Yn is CAT(0) if n ≥ 4, so a CAT(0) complex is not
necessarily 6-systolic in these dimensions.

A much more subtle question is whether a 6-systolic complex admits any
piecewise euclidean metric for which it is CAT(0). We do not have the answer
to this question, but suspect it is negative.

An important problem that we study in the remaining part of this section
is whether the stronger systolic conditions, i.e. k-systolicity for sufficiently large k,
imply CAT(0) or even CAT(−1) condition for piecewise euclidean or piecewise
hyperbolic metrics. Given a metric simplicial complex X, denote by Shapes(X) the
set of isometry classes of the faces of X. Our main result in this section is the
following.

14.1. Theorem. — Let Π be a finite set of isometry classes of metric simplices of

constant curvature 1, 0 or −1. Then there is a natural number k ≥ 6, depending only on Π,

such that:

(1) if X is a piecewise spherical k-large complex with Shapes(X) ⊂ Π then X is

CAT(1);

(2) if X is piecewise euclidean (respectively, piecewise hyperbolic), locally k-large and

Shapes(X) ⊂ Π then X is nonpositively curved (respectively, has curvature κ ≤ −1);

(3) if, in addition to the assumptions of (2), X is simply connected then it is CAT(0)

(respectively, CAT(−1)).

Remarks.

(1) The above theorem, combined with the constructions of k-systolic com-
plexes in Sections 18 and 19, provides large class of new interesting ex-
amples of CAT(1), CAT(0) and CAT(−1) spaces.

(2) The proof of Theorem 14.1 given below does not lead to effective esti-
mates for the number k. In Section 16 we explicitly estimate k for regular
piecewise euclidean metrics.
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Observe that parts (2) and (3) of the theorem follow directly from part (1)
in view of characterization of the curvature bounds in terms of CAT(1) property
for spherical links of a complex [BH, Theorems 5.2 and 5.4, p. 206]. We thus
concentrate on the proof of part (1).

We start with two auxiliary results for which we need some preparation.
Given a closed geodesic γ in a piecewise spherical simplicial complex X with
Shapes(X) finite, the size of γ is the number of maximal nontrivial subsegments
in γ contained in a single simplex of X. Note that this number is always finite
since any local geodesic of finite length in X is the concatenation of a finite num-
ber of segments, each contained in a simplex ([BH, Corollary 7.29, p. 110]). The
following result is a reformulation of [BH, Theorem 7.28, p. 109] or [B, Lemma 1].

14.2. Theorem. — Given a finite set S of isometry classes of spherical simplices,

there is a natural number N (depending on S ) such that if a local geodesic γ in a piecewise

spherical simplicial complex X with Shapes(X) ⊂ S has length less than 2π then its size

is less than N.

Recall that a simplicial complex is ∞-large if it is k-large for any natural k.
Using Fact 1.2.4 we can also characterize ∞-large simplicial complexes as those
which are flag and contain no full cycle. In the proof of Theorem 14.1 we need
the following.

14.3. Proposition. — Let X be a piecewise spherical ∞-large simplicial complex with

Shapes(X) finite. Then X contains no closed local geodesic.

Remark. — Note that the above proposition implies that any piecewise spheri-
cal (with constant curvature 1) ∞-large simplicial complex is CAT(1). The straight-
forward argument for this uses the following two facts:

(1) a piecewise spherical complex is CAT(1) if and only if neither this com-
plex nor any of its (spherical) links contains a closed geodesic of length
less than 2π (compare [BH, Theorem 5.4(7), p. 206]);

(2) links of an ∞-large simplicial complex are ∞-large.

Proposition 14.3 is the direct consequence of the following.

14.4. Lemma. — Let X be a piecewise spherical ∞-large simplicial complex with

Shapes(X) finite. Then any local geodesic γ in X connecting two point of some simplex of

X is contained in this simplex.

Proof. — Let K be the full subcomplex of X spanned by those simplices
whose interiors are intersected by γ . Since γ has finite size, the subcomplex K
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is finite. Moreover, γ is a local geodesic in K and K is still ∞-large. We argue
by induction with respect to the number of maximal simplices in K. When K
is a single simplex the assertion is obvious. Otherwise, by Dirac’s characterization
of finite ∞-large complexes (see Example 1.8.8), K is obtained from some ∞-
large complexes K1, K2 by gluing along a single simplex σ . Note that γ has to
be contained in K1 or K2, since otherwise K1 or K2 contains some subsegment
of γ with both endpoints in σ but not contained in σ , and this is impossible by
inductive assumption. If γ is contained in K1 or K2, the same inductive assumption
implies the assertion, and the lemma follows.

Proof of Theorem 14.1. — As mentioned before, it is sufficient to prove part (1)
of the theorem, i.e. the case of piecewise spherical complexes.

Let S be the link completion of Π, i.e. the union of Π and the set of
isometry classes of all links in simplices representing all classes from Π. Since Π

is finite, so is S . Consider all closed geodesics γ of length less than 2π in all
piecewise spherical flag simplicial complexes X with Shapes(X) ⊂ S . For each
such geodesic denote by Kγ the full subcomplex in the corresponding complex X
spanned by the union of all simplices of X whose interior is intersected by γ .
There are only finitely many combinatorial types of complexes Kγ as above be-
cause, due to Theorem 14.2, the number of vertices in any such complex is
bounded by a universal constant (e.g. by the product of a constant N from The-
orem 14.2 for the set S and the maximal dimension of a simplex with isometry
class in S ).

Since each of the complexes Kγ contains a closed geodesic, it follows from
Proposition 14.3 that it is not ∞-large. In particular, the systole sys(Kγ ) of any
such complex is finite. Put

k = max{sys(Kγ ) : Kγ as above} + 1

and note that the maximum is taken over a finite set (due to finiteness of combi-
natorial types of complexes Kγ ).

We claim that any k-large piecewise spherical simplicial complex Y with
Shapes(Y) ⊂ Π is CAT(1). To prove this, observe that due to the definition
of k, neither Y nor any of its links contains a closed geodesic of length less than
2π (this implies that Y is CAT(1), as already mentioned before; see [BH, The-
orem 5.4(7), p. 206]). If this were not the case, we would have the corresponding
subcomplex Kγ with sys(Kγ ) < k in a complex Z isomorphic either to Y or to
some link of Y. Since Shapes(Z) ⊂ S , we would have Kγ containing a full cycle
of length less than k. But, since Kγ is a full subcomplex in Z, the same cycle
would be full in the complex Z, contradicting the fact that Y is k-large. This
completes the proof.
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14.5. Remark. — Theorem 14.1 applies in particular to finite dimensional
simplicial complexes equipped with the standard piecewise euclidean metrics. Note
however that for these metrics the number k in the assertion of the theorem
necessarily grows to infinity as the dimension of a complex grows. To see this,
recall that if σ is the regular spherical (2n − 1)-simplex with side lengths π/3 (i.e.
the simplex occurring as the spherical link of the regular euclidean 2n-simplex at
a vertex) then the distance dn between the barycenters of opposite (n − 1)-faces
in σ converges to 0 as n grows. In fact dn = arccos( n

n+1). For any m ≥ 3 consider
the simplicial complex X2n

m of dimension 2n defined as the simplicial cone over
the complex ∪i∈Z/mZτi ∗ τi+1, where τi is an (n − 1)-simplex for any i ∈ Z/mZ.
Clearly, X2n

m is an m-systolic simplicial complex. If we equip it with the standard
piecewise euclidean metric, its spherical link at the cone vertex obviously contains
a closed geodesic of length m · dn. A necessary condition for X2n

m to be CAT(0) is
that m · dn ≥ 2π, i.e. that m ≥ 2π/dn, which justifies our observation.

15. Acute angled complexes

In this section we present another proof of Theorem 14.1, for the restricted
case of acute angled complexes. Despite being less general, the proof has two
advantages. First, its conclusion in the spherical case is stronger, namely that there
is no homotopically trivial closed local geodesic both in the complex and in any of
its links. Second, the proof in this section allows explicit and realistic estimates for
the number k in the assertion. In Section 16 we give such estimates for standard
piecewise euclidean metrics on complexes of any dimension.

A constant curvature simplex (spherical, euclidean or hyperbolic) is acute angled

if all its dihedral angles (between codimension 1 faces) are less than π/2. A con-
stant curvature metric simplicial complex is acute angled if all its faces are acute
angled. Observe that if σ is an acute angled simplex then its links στ at all faces
τ are acute angled spherical simplices. Thus, all links of an acute angled com-
plex are acute angled spherical complexes. Hence, as in Section 14, it is clearly
sufficient to prove the theorem for (acute angled) spherical complexes.

We start with a few definitions. A small ball in a systolic simplicial complex
X is a subcomplex of form Bi(σ, X) for some simplex σ of X and for some
i ∈ {0, 1, 2}. Given a real number r > 0, we say that a subset A in a geodesic
metric space X is r-convex if for any two points in A at distance in X less than r,
any geodesic in X connecting these two points is contained in A. The proof of
Theorem 14.1 presented in this section relies on the following.

15.1. Proposition. — Let X be a systolic piecewise spherical acute angled simplicial

complex and suppose that
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(0) the set Shapes(X) is finite;

(1) all links of X are CAT(1);

(2) all the small balls in the links of X are π-convex.

Then X does not admit a closed local geodesic. Moreover, for any simplex ν in X any ball

B = Bm(ν, X) is local-geodesically convex (i.e. any local geodesic segment in X with its

endpoints in B is contained in B).

Before giving a proof we present two useful corollaries to Proposition 15.1.
Note that, by combining assumption (1) and the first assertion of the proposition
we get that X as above is CAT(1). This observation is refined in the first corollary
below. The girth of the complex X, denoted girth(X), is the infimum of the lengths
of homotopically nontrivial paths in X.

15.2. Corollary. — Let X be a locally 6-large piecewise spherical acute angled sim-

plicial complex satisfying assumptions (0), (1) and (2) in Proposition 15.1, and suppose that

girth(X) ≥ 2π. Then X is CAT(1).

Proof. — Recall that if all links of a piecewise spherical complex X are
CAT(1) and if there is no closed geodesic in X of length less than 2π then X is
CAT(1). It remains to check the second assumption in the above statement. By
applying Proposition 15.1 to the universal covering of X we conclude that there are
no closed homotopically trivial geodesics in X. On the other hand, the length of
each homotopically nontrivial closed geodesic in X is not less then girth(X) ≥ 2π,
and the corollary follows.

To prove Theorem 14.1 we will need another result easily implied by Propo-
sition 15.1.

15.3. Corollary. — Let X be as in Corollary 15.2. Put

δ := max{diam(σ) : σ ∈ Shapes(X)}.
Suppose also that girth(X) ≥ π + 5δ. Then any small ball in X is π-convex.

Proof. — Fix a small ball B in X. It is sufficient to prove that any geodesic
segment in X intersecting B only at its endpoints has length ≥ π. This is true if
X is simply connected since it follows from the last assertion of Proposition 15.1
that there is no geodesic segment in X intersecting B only at its endpoints. Thus,
in the general case, such a geodesic segment has to be homotopically nontrivial
in X/B, and hence its length l can be estimated by

l ≥ girth(X) − diam(B) ≥ girth(X) − 5δ ≥ (π + 5δ) − 5δ = π.

This finishes the proof.
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To prove Proposition 15.1 we need four preparatory results.

15.4. Fact. — Let K be a connected subcomplex in a CAT(1) piecewise
spherical complex S. Suppose that links of K are π-convex in the corresponding
links of S and that diam(K) < π. Then (1) K is π-convex in S and (2) K is
CAT(1).

Proof. — Since diam(K) < π, any two points of K are connected by a geo-
desic segment in K of length less than π. Since K is locally π-convex in S, this
segment is a local geodesic in S (compare [BH, Remark 5.7, p. 60] or [CD,
Lemma 1.6.5]). Since S is CAT(1), this segment is a geodesic in S ([BH, Prop-
osition 1.4(2), p. 160]) and, since S is π-uniquely geodesic (condition (6) in [BH,
Theorem 5.4, p. 206]), it is the unique geodesic in S connecting these two points,
hence (1). The same argument shows that K is π-uniquely geodesic, hence (2) (by
equivalence of (5) and (6) in [BH, Theorem 5.4, p. 206]).

15.5. Lemma. — Let X0 = σ ∗ X and Y0 = σ ∗ Y, where Y is a subcomplex

in a simplicial complex X, σ is a simplex and ∗ denotes the simplicial join. Suppose that

X0 is equipped with a piecewise spherical metric with all simplices acute angled, and that the

spherical link (X0)σ is CAT(1) while the spherical link (Y0)σ is π-convex in (X0)σ . Then

X0 is CAT(1) and Y0 is π-convex in X0.

Proof. — Denote by ∗s the operation of spherical join for piecewise spherical
complexes. Viewing the simplex σ as embedded in the sphere Sn of dimension
n = dim σ , we can consider the embedding i : X0 → Sn ∗s (X0)σ which is isometric
on simplices of X0. For an appropriate choice of a piecewise spherical simplicial
structure on Sn ∗s (X0)σ , the map i identifies X0 as a subcomplex in Sn ∗s (X0)σ .

We will prove simultaneously the following three statements by induction on
k = dim(X0):

(1) X0 is π-convex in Sn ∗s (X0)σ (here we identify X0 with its image i(X0)

through the embedding i );
(2) X0 is CAT(1);
(3) Y0 is π-convex in X0.

The statements are clearly true if k = 1. The inductive step will be based on
the observation that the assumptions in 15.5 are inherited by pairs of spherical
links (X0)τ, (Y0)τ for any simplex τ of Y0. More precisely, denote by σ + τ the
smallest simplex in X0 containing both σ and τ , and by σ − τ the maximal
face of σ disjoint with τ (empty, if σ ⊂ τ ). Then, for any τ in X0 we have
(X0)τ = (σ − τ)∗ (X0)σ+τ . Moreover, if τ is contained in Y0, we also have (Y0)τ =
(σ −τ)∗ (Y0)σ+τ . The metric assumptions of the lemma are satisfied for these links
because both CAT(1) and π-convexity are the properties inherited by links.
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Fix the pair X0, Y0 as in the lemma and suppose inductively that the asser-
tions (1)–(3) are satisfied by the pairs of links as above. View X0 as a subset in the
spherical join Sn∗s(X0)σ . If τ is a simplex of X0 containing σ , then the metric links
(X0)τ and [Sn ∗s (X0)σ ]τ coincide. Otherwise, the inclusion (X0)τ ⊂ [Sn ∗s (X0)σ ]τ
has the same form as the inclusion X0 ⊂ Sn ∗s (X0)σ . More precisely, the link
[Sn ∗ (X0)σ ]τ canonically identifies with the spherical join Sm ∗s (X0)σ+τ , where
Sm is the sphere of dimension m = dim(σ + τ)τ . Moreover, (X0)τ has the form
as X0, with the simplex (σ + τ)τ = σ − τ playing the role of σ , and with
[(X0)τ]σ−τ = (X0)σ+τ (metrically). An inclusion of σ − τ in Sm determines then
the inclusion of (X0)τ in Sm ∗s (X0)σ+τ which coincides with the inclusion of the
metric links at τ of X0 and Sn ∗s (X0)σ .

By combining the above observation with assertion (1) in the inductive as-
sumption we conclude that links of X0 are π-convex in the corresponding links of
the simplicial join Sn ∗s (X0)σ . Since this join is CAT(1) (because spherical joins of
CAT(1) spaces are CAT(1)) and diam(X0) < π (due to acute angleness), assertions
(1) and (2) for X0 follow from assertions (1) and (2) of Fact 15.4.

To prove that Y0 is π-convex in X0, observe that links of Y0 are π-convex
in the corresponding links of X0. In view of the above described forms of links
of X0 and Y0 this follows from the statement (3) in the inductive assumption.
Since X0 is already proved to be CAT(1), and the diameter of Y0 is less than π,
Fact 15.4.1 implies statement (3) for the pair X0, Y0, and the lemma follows.

Next two preparatory results concern combinatorial properties (related to con-
vexity) of balls in systolic simplicial complexes. We fix the following assumptions
and notation for these two results. Let X be a systolic simplicial complex with
dim(X) = n and let ν be a simplex of X. For a ball B = Bm(ν, X) in X with
m ≥ 1 and with the sphere S = Sm(ν, m) (as defined in Section 7) consider the
sequence B = B0 ⊂ B1 ⊂ B2 ⊂ ... ⊂ Bn = NX(B) of subcomplexes in X defined
recursively by

Bi = Bi−1 ∪
⋃

{Res(σ, X) : σ ⊂ S, dim(σ) = n − i}.

Clearly, we then have Bn = B1(B, X) = Bm+1(ν, X).

15.6. Lemma. — Let σ ⊂ S be a simplex of dimension n − i. Then

(1) the link (Bi−1)σ is a small ball in Xσ ;

(2) Bi−1 ∩ Res(σ, X) = Res(σ, Bi−1).

Proof. — Recall that, by Corollary 7.9.2, Bσ = B1(ρ, Xσ ) for some simplex
ρ ⊂ Xσ . Moreover, from the definition of Bi−1 it follows that (Bi−1)σ = B1(Bσ , Xσ ),
hence (1).
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To prove (2), suppose that τ is a simplex in Bi−1 ∩ Res(σ, X). Let τ1, τ2 be
the maximal faces of τ contained in B and disjoint from B respectively. The latter
is well defined since B is full in X (Corollary 7.5). For the same reason τ1, τ2

span τ and that τ1, σ span a simplex of B. Since τ2 ⊂ Bi−1, there is a simplex
ρ ⊂ S of dimension at least n− i+1 such that τ2 ⊂ Res(ρ, X). On the other hand,
by Corollary 7.9.1, Res(τ2, X) ∩ B is a single simplex, and since it contains ρ, its
dimension is at least n − i + 1. It follows that [Res(τ2, X) ∩ B] ∗ τ2 is a simplex in
Bi−1. But Res(τ2, X) ∩ B also contains σ , hence σ and τ = τ1 ∗ τ2 span a simplex
of Bi−1. This gives the inclusion Bi−1 ∩ Res(σ, X) ⊂ Res(σ, Bi−1), and since the
converse inclusion is obvious, the lemma follows.

15.7. Lemma. — If σ1, σ2 are two distinct simplices of dimension n − i in S then

Res(σ1, X) ∩ Res(σ2, X) ⊂ Bi−1.

Proof. — Let τ ⊂ Res(σ1, X) ∩ Res(σ2, X) and suppose that, contrary to the
assertion, τ is not contained in Bi−1. Since B is full in X (see Corollary 7.5) and
B ⊂ Bi−1, by passing to a face of τ if necessary, we may (and will) assume that τ

is disjoint with B. By convexity of B we know that the intersection Res(τ, X) ∩ B,
which contains both σ1 and σ2, is then a single simplex (Corollary 7.9.1) which
is contained in S and which we denote by σ . It follows that dim σ > dim σ1 =
dim σ2 = n−i, and hence Res(σ, X) ⊂ Bi−1. But τ is clearly contained in Res(σ, X),
and hence also in Bi−1, a contradiction. Hence the lemma.

Proof of Proposition 15.1. — It is sufficient to prove the last assertion in the
statement of the proposition, i.e. that balls in X are local-geodesically convex: if
there is a closed local geodesic γ in X then any ball intersecting γ and not
containing it is not local-geodesically convex.

By the assumption that Shapes(X) is finite we know that a local geodesic
in X of finite length is the concatenation of a finite number of segments, each
contained in a simplex of X ([BH, Corollary 7.29, p. 110]). Thus, to prove the
proposition, it is sufficient to apply recursively the following

Claim. — A local geodesic γ in X that leaves a ball B = Bm(ν, X) does not
return to B before leaving the ball Bm+1(ν, X).

Suppose that dim(X) = n. To get the claim it is sufficient to show that, for
any 1 ≤ i ≤ n, if a local geodesic γ leaves Bi−1 then it does not return to Bi−1

before leaving Bi.
Let γ be a local geodesic that leaves Bi−1. We may assume that γ is a local

geodesic ray in X starting at a point p ∈ Bi−1 and locally near p intersecting Bi−1

only at p. It may happen that γ leaves Bi at the same moment, i.e. that locally



TADEUSZ JANUSZKIEWICZ, JACEK ŚWIA̧TKOWSKI

near p it intersects Bi only at p. Then our assertion holds. We will then consider
the opposite case, when γ remains in Bi near p.

Note that, due to Lemma 15.7, the sets Res(σ, X) \ Bi−1 for all simplices
σ ⊂ S with dim σ = n − i are pairwise disjoint. Thus, leaving Bi−1, γ enters
exactly one of them. Again by Lemma 15.7, it is sufficient to show that γ does
not return to Bi−1 before leaving Res(σ, X).

Now we make use of Lemma 15.5. Put X0 = Res(σ, X) and Y0 = Bi−1 ∩X0.
We then have X0 = σ ∗ Xσ and, by Lemma 15.6.2, Y0 = σ ∗ (Bi−1)σ (simplicially).
Since, by Lemma 15.6.1, (Bi−1)σ is a small ball in Xσ , it follows from assumptions
of Proposition 15.1 that the pair X0, Y0 satisfies both combinatorial and metric
assumptions of Lemma 15.5. Thus X0 is CAT(1) while Y0 is π-convex in X0.

Any part of the local geodesic γ passing through X0 is clearly a local
geodesic in X0. Moreover, since a local geodesic of length less than π in a CAT(1)

space is a geodesic, and since diam(X0) < π, any local geodesic in X0 has length
less than π. By π-convexity of Y0, the maximal initial segment γ0 of γ contained
in X0 (which has length less than π) intersects Y0 only at the initial point p, and
hence it intersects Bi−1 only at p. Thus, γ does not return to Bi−1 before leaving
X0 = Res(σ, X), which completes the proof.

Proof of Theorem 14.1 ( for acute angled piecewise spherical complexes). — Note
first that the theorem clearly holds for complexes X with dim X ≤ 1. Moreover,
the number k can be chosen so large that additionally the small balls in those
complexes are all π-convex. We will prove theorem together with the additional
property of π-injectivity for all small balls in X, using induction with respect to
n = dim X.

Suppose that the theorem and the assertion that all small balls in X are
π-convex holds for all complexes X with dim X ≤ n. Let Π be a finite set of
(isometry classes of ) acute angled spherical simplices, and denote by L(Π) the set
of (isometry classes of ) all links of simplices from Π. Then L(Π) is also finite. Let
k1 be a natural number as prescribed by the inductive assumption for complexes
X with Shapes(X) ⊂ L(Π) and dim X ≤ n. Let X be a k1-large complex with
Shapes(X) ⊂ Π and with dim(X) = n + 1. Then, by the inductive assumption,
the links of X are CAT(1) and all small balls in those links are π-convex. Thus
X satisfies the assumptions of Proposition 15.1, and hence also the assumptions
of Corollaries 15.2 and 15.3 except perhaps those concerning girth. To get the
inductive step, note that by requiring that sysh(X) ≥ k for sufficiently large k ≥ k1

we can assure that girth(X) is as large as we wish. In particular, we can assure
that girth(X) ≥ max(2π, π + 5δ), where δ = max{diam∆ : ∆ ∈ Π}. It follows that if
X is k-large (which implies that links of X are k1-large and sysh(X) ≥ k) then X is
CAT(1) (Corollary 15.2) and the small balls in X are π-convex (Corollary 15.3).
This finishes the inductive proof.



SIMPLICIAL NONPOSITIVE CURVATURE

15.8. Remark. — In the next section we give explicit estimates of girth(X)

in terms of sysh(X) for piecewise spherical complexes occurring as links in com-
plexes with the standard piecewise euclidean metric. In view of the last part of the
above proof, this gives explicit constants k in Theorem 14.1, depending only on
dimension, for complexes with the standard piecewise euclidean metric. In princi-
ple, such explicit estimates for constants k can be obtained for other finite sets of
acute angled shapes as well.

16. Explicit constants

In this section we prove more explicit version of Theorem 14.1.3, for com-
plexes with standard piecewise euclidean metrics. It is obtained by referring to the
arguments from Section 15. A large part of the section deals with more general
metrics and the obtained results can be used to derive explicit estimates for other
classes of piecewise constant curvature acute angled complexes. In the case that
we study in detail we get the following.

16.1. Theorem. — Let k be a natural number such that

k ≥ 7π
√

2
2

· n + 2.

Then any k-systolic simplicial complex X with dim X ≤ n is CAT(0) with respect to the

standard piecewise euclidean metric.

Remark. — The estimate for k in the above theorem is obviously not optimal.
It gives k ≥ 34 for n = 2, while k ≥ 6 is clearly sufficient. For n = 3 the theorem
gives n ≥ 49, while a careful application of our methods allows to get k ≥ 11.
The estimate seems also to be far from optimal asymptotically, as k → ∞. We
expect that k ≥ C · √

n for some constant C is sufficient. Note that, since in
Remark 14.5 we have dn ∼ 1/

√
n, the latter prediction coincides with the necessary

condition observed in this remark. Also, our choice of functions ϕn
L, j ( just before

Lemma 16.7, below) is clearly not optimal, and we see potential for improvement
of the estimate in making this choice more carefully.

To prove Theorem 16.1 we need a few preparatory results. We formulate
first three of them in the framework of piecewise riemannian simplicial complexes
(though we are interested in piecewise spherical case only), because it exhibits
better the essence of our arguments.

Recall that a riemannian simplex is a simplex equipped with a smooth rieman-
nian metric. A piecewise riemannian simplicial complex is obtained from riemannian sim-
plices by gluing them together along some of their faces through diffeomorphisms
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that preserve riemannian metrics restricted to those faces. A piecewise riemannian
simplicial complex having the set Shapes(X) of its riemannian simplices finite, is
equipped with the metric given by minimizing lengths of piecewise smooth paths.
Our aim is the following.

16.2. Proposition. — Let S be a finite set of isometry classes of riemannian simplices.

Then there exists a constant DS > 0 such that if X is a metric simplicial complex with

Shapes(X) ⊂ S then girth(X) ≥ DS · (sysh(X) − 2).

In the proof of the above proposition we will need to estimate distances in
complexes X in terms of gradients of some piecewise smooth functions. A real
valued function f : X → R is piecewise smooth if its restriction f |σ to any simplex
σ ⊂ X is smooth. Given such a function, put

Mf := sup{max{‖∇( f |σ)(x)‖ : x ∈ σ} : σ ⊂ X},
where ∇ denotes gradient and ‖ · ‖ denotes length (for vectors tangent to σ ) with
respect to the riemannian metric on σ . One of the well known properties of
gradient is the following.

16.3. Lemma. — Let f : X → R be a piecewise smooth function on a connected metric

(riemannian) simplicial complex X. Then for any points p, q ∈ X we have | f (p) − f (q)| ≤
Mf · dX(p, q). In particular, if the supremum Mf is finite then

dX(p, q) ≥ 1
Mf

· | f (p) − f (q)|.

Given a connected simplicial complex X and a simplex σ ⊂ X, a distance-like

function for (X, σ) is a piecewise smooth function f : X → R such that Si(σ, X) ⊂
f −1(i). (Recall that Si(σ, X) is a subcomplex of X spanned by the set of all vertices
in X at polygonal distance i from σ .)

16.4. Lemma. — Given a finite set S of isometry classes of riemannian simplices, there

is a constant 0 < MS < ∞ with the following property: For any connected metric simplicial

complex X with Shapes(X) ⊂ S and for any simplex σ ⊂ X there is a distance-like

function f for (X, σ) with Mf ≤ MS .

Proof. — We will show that distance-like functions for complexes X with
Shapes(X) finite can be constructed out of an essentially finite collection FS of
functions on the simplices from Shapes(X). (By saying that FS is essentially fi-
nite we mean that it is obtained from some finite sub-collection F0

S by adding
constants.) This clearly implies the lemma since for such functions the supremum
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Mf is taken essentially over a subset in a finite set of numbers, namely the set of
maxima of gradient lengths for functions in FS . A collection FS as above can
be constructed as follows.

For each 1-simplex E in S consider all combinations of values 0 and 1 at
the vertices of E. For each such combination take a smooth function ϕ : E → R
compatible with the prescribed values at vertices and such that ϕ is constant if
the two values at vertices are equal. Further, for each 2-simplex ∆ in S consider
all combinations of values 0 and 1 at the vertices. Given such a combination, for
each boundary face of ∆ consider the already defined function on the simplex in
S isometric to this face, respecting the prescribed values at vertices. Extend the
so obtained function on the boundary of ∆ to a smooth function on ∆ so that
it is a constant function if the prescribed values at the vertices are all equal. By
applying this procedure gradually to the simplices in S of all dimensions we get
a finite collection F0

S of functions. As FS take the set of all functions obtained
from the functions in F0

S by adding constants from the set of natural numbers
(including 0).

For any complex X with Shapes(X) ⊂ S and for any simplex σ ⊂ X
one can construct a distance-like function f for (X, σ) simplex-wise, out of the
functions from FS , as follows. As values of f at the vertices of X take their
polygonal distances from σ . Next, observe that for any simplex τ in X one of the
following two cases holds:

(1) the values of f at the vertices of τ are all equal;
(2) the set of values of f at the vertices of τ consists of two natural numbers

that differ by 1.

This observation shows that we can extend f gradually to higher dimensional
skeleta of X, using the functions from FS .

By the construction of the functions in FS we know that if for some simplex
τ in X the above case (1) holds then a function f obtained as above is constant
at τ . This implies that f is also constant at the spheres Si(σ, X), with values i,
and thus it is a distance-like function for (X, σ), as required. This finishes the
proof.

Proof of Proposition 16.2. — Let X̃ be the universal cover of X with the lifted
metric. Then girth(X) is equal to the infimum of the distances dX̃(p1, p2) over all
points p ∈ X and all pairs p1, p2 of distinct lifts of p to X̃. Fix a pair p1, p2 as
above, and let σ be a simplex of X̃ containing p1. Observe that, if m = sysh(X),
then p2 lies outside the ball Bm−2(σ, X̃). It follows that

dX̃(p1, p2) ≥ inf{dX̃(p1, q) : q ∈ Sm−2(σ, X̃)}.(16.2.1)
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Let MS be as in Lemma 16.4. Since Shapes(X̃) ⊂ S , the same lemma implies
that there is a distance-like function f for (X̃, σ) with Mf ≤ MS . We clearly have
f (p1) = 0 and f (q) = m − 2 for any q ∈ Sm−2(σ, X̃). Applying Lemma 16.3 we get

dX̃(p1, q) ≥ 1
Mf

· (m − 2) ≥ 1
MS

· (m − 2) = 1
MS

· (sysh(X) − 2).

Combining this with the inequality (16.2.1) we get the proposition for DS =
1/MS .

We now shift our attention to piecewise constant curvature acute angled com-
plexes. We will apply Proposition 16.2 together with the results and ideas of Sec-
tion 15 to get the following.

16.5. Proposition. — Let S0 be a finite set of isometry classes of acute angled spher-

ical simplices, and denote by S its link completion, i.e. the union of S0 and the set of

isometry classes of links at all faces for all simplices in S0. Let DS be a constant as in

Proposition 16.2, and k a natural number such that

k ≥ max
[

6,
7π

2DS

+ 2
]

.

If X is a k-large piecewise spherical complex with Shapes(X) ⊂ S0 then X is CAT(1).

By applying the characterization of the CAT(0) and CAT(−1) conditions in
terms of the CAT(1) condition for links (see condition (4) in [BH, Theorem 5.4,
p. 206]), Proposition 16.5 implies the following.

16.6. Corollary. — Let T be a finite set of isometry classes of acute angled euclidean

(respectively hyperbolic) simplices, and denote by S the set of isometry classes of links at all

faces for all simplices in T . Let DS be a constant as in Proposition 16.2, and k a natural

number such that

k ≥ max
[

6,
7π

2DS

+ 2
]

.

If X is a k-systolic piecewise euclidean (respectively piecewise hyperbolic) complex with

Shapes(X) ⊂ T then X is CAT(0) (respectively CAT(−1)).

Proof of Proposition 16.5. — First note that if X is k-large then sysh(X) ≥ k
and sysh(Xσ) ≥ k for all links Xσ of X. It follows then from Proposition 16.2 that
girth(X) ≥ 7π/2 and girth(Xσ) ≥ 7π/2 for all links Xσ . Moreover, by acuteness,
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diameters of all simplices in X and in all links Xσ are less than π/2, so if δ is
as in Corollary 15.3 for X or for Xσ respectively, we get

girth(X) ≥ 7π

2
≥ π + 5δ and girth(Xσ ) ≥ 7π

2
≥ π + 5δ.

Now, using induction with respect to the dimension of complexes, based on Corol-
laries 15.2, 15.3 and on the above inequalities, we get that all links Xσ in X are
CAT(1) and all small balls in them are π-convex. In the end of this inductive
proof we get that X is CAT(1), hence the proposition.

In the next series of preparatory results we study piecewise spherical com-
plexes composed of regular simplices with fixed side lengths. Such complexes occur
as links in complexes with standard piecewise euclidean metrics. We define and
study some functions on the regular spherical simplices. These functions allow to
construct appropriate distance-like functions on the complexes as above and to cal-
culate explicitly the constants MS as in Lemma 16.3 in the situations under our
interest.

Let Σn
L be the n-dimensional spherical (with constant curvature 1) regular

simplex with side lengths L. This makes sense for 0 < L < 2π/3, but we will be in-
terested in the cases when π/3 ≤ L < π/2. Let Sn be the sphere of radius 1 canon-
ically embedded in the euclidean space En+1, and suppose that Σn

L is embedded
in Sn. Denote by ∆n

L the simplex in En+1 affinely spanned by the vertices v1, ..., vn+1

of Σn
L, with the induced regular euclidean metric in which the sides of ∆n

L have
lengths 2 sin(L/2). Consider also the radial projection Pn

L : Σn
L → ∆n

L, in the di-
rection of the center of Sn, which is clearly a diffeomorphism. For j = 0, 1, ..., n
let λn

L, j be the linear function on the simplex ∆n
L with values 1 at the vertices

v1, ..., vj and 0 at the remaining vertices. Finally, define functions ϕn
L, j : Σn

L → R
by putting ϕn

L, j := λn
L, j ◦ Pn

L.

16.7. Lemma. — For j = 1, ..., n let Hn
L, j be the distance in ∆n

L between the

barycenters of opposite faces of dimensions j − 1 and n − j. Denote also by βn
L the distance in

the simplex Σn
L between its barycenter and any of its vertices. Then

max
{∥∥∇ϕn

L, j(x)
∥∥ : x ∈ Σn

L

} ≤ 1
Hn

L, j · cos βn
L

for j = 1, ..., n.

Proof. — Note that, since the function λn
L is linear and takes the values 0

and 1 at the opposite faces of dimensions j − 1 and n − j respectively, we have

∥∥∇λn
L, j( y)

∥∥ = 1
Hn

L, j

for each y ∈ ∆n
L.(16.7.1)
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Since ϕn
L, j = λn

L, j ◦ Pn
L, we may use the following estimate for gradient length of

a pulled back function, which follows directly from the chain rule.

Fact. — Let M1, M2 be riemannian manifolds, f : M1 → R a smooth func-
tion and q : M2 → M1 a smooth map. Then for any x ∈ M2 we have

‖∇( f ◦ q)(x)‖ ≤ ‖∇f (q(x))‖ · ‖dqx‖,(16.7.2)

where ‖dqx‖ is the norm of the differential dqx : TxM2 → Tf (x)M1 with respect to
riemannian norms at tangent spaces.

To apply the above fact in our proof we need to estimate the norms
‖(dϕn

L, j)x‖ for x ∈ Σn
L. View again Σn

L as embedded in Sn ⊂ En+1, and ∆n
L as

affinely spanned in En+1 by the vertices of Σn
L. The riemannian lengths of vec-

tors tangent to Σn
L and ∆n

L coincide then with the ordinary euclidean lengths of
these vectors in En+1. Fix any x ∈ Σn

L and any vector V tangent to σ n
L at x. Put

y = Pn
L(x) ∈ ∆n

L and note that the differential (dPn
L, j)x : TxΣ

n
L → Ty∆

n
L, j is the

restriction of the differential dPx : TxEn+1 → Ty∆
n of the radial projection in En+1

(with respect to the center of Sn) from an open neighbourhood U of Σn
L to the

hyperplane containing ∆n
L. Let V = Vr + Vp, where Vr is the radial component of

V in En+1 (parallel to the radius of Sn through x) and Vp is its component parallel
to ∆n

L. Since clearly dPx(Vr) = 0 and dPx(Vp) = a · Vp, where a ≤ 1 is the ratio
of the distances from the center of Sn of the points y and x respectively, we get
(dPn

L)x(V) = a · Vp. To estimate the length of the component Vp, denote by αx the
angle between the radii in Sn through the barycenter of σ n

L and through x. Since
αx is also the dihedral angle between the hyperplane tangent to Σn

L at x and the
hyperplane containing ∆n

L, we get ‖Vp‖ ≤ ‖V‖/ cos αx. But in our case we have
αx ≤ βn

L and we obtain an estimate

∥∥(
dPn

L

)
x
(V)

∥∥ = ‖a · Vp‖ ≤ a
cos βn

L

‖V‖ ≤ 1
cos βn

L

‖V‖.

This shows that
∥∥(

dPn
L

)
x

∥∥ ≤ 1
cos βn

L

for each x ∈ Σn
L.

By combining this with (16.7.1) and (16.7.2) the lemma follows.

16.8. Corollary. — If π/3 ≤ L ≤ π/2 then

max
{∥∥∇ϕn

L, j(x)
∥∥ : x ∈ Σn

L

} ≤ (n + 1)
√

2
2

for j = 1, ..., n.
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Proof. — Note that the size of the simplex ∆n
L increases with the increase

of L and hence for L ≥ π/3 we have Hn
L, j ≥ Hn

π/3, j . A direct computation in the
simplex ∆n

π/3 (which has side lengths 1) shows that

Hn
π/3, j ≥

√
2√

n + 1

for any 1 ≤ j ≤ n. On the other hand, if L ≤ π/2, we clearly have βn
L ≤ βn

π/2.
By a direct computation in the right-angled spherical simplex Σn

π/2 we get that
cos βn

π/2 = 1/
√

n + 1 which implies that

cos βn
L ≥ 1√

n + 1
.(16.8.2)

Combining the inequalities (16.8.1) and (16.8.2) with the inequality from
Lemma 16.7 finishes the proof.

Proof of Theorem 16.1. — Note that, due to the definition of the functions
ϕn

L, j in terms of linear functions and radial projections, the restriction of any such
function to a face Σn′

L in Σn
L is either constant equal to 1 or coincides with

the appropriate function ϕn′
L,j ′ . Thus, the functions obtained from the functions ϕn

L, j
(for all n and j ) by adding natural constants are sufficient to construct distance-like
functions as in the proof of Lemma 16.4 for metric complexes with all simplices
spherical regular of side length L. Denoting by S n

L the set of (isometry classes of )
simplices Σi

L with 0 ≤ i ≤ n, and assuming that π/3 ≤ L ≤ π/2, we get from
Corollary 16.8 that MS n

L
= (n + 1)

√
2/2 works in Lemma 16.4 for S = S n

L .
Let T be the set of isometry classes of the standard regular euclidean sim-

plices of dimensions ≤ n. Then the set S , as in Corollary 16.8, of isometry classes
of links at all faces for all simplices in T can be expressed as the union

S = ∪n−2
i=0 S n−1−i

Li
,

where each of the sets S n−1−i
Li

consists of links at i-dimensional faces and the
numbers Li = arccos(1/(k + 2)) are the side lengths in such links, as a dir-
ect calculation shows. Since π/3 ≤ Li < π/2, the argument above shows that
we can take MS = n

√
2/2 in the conclusion of Lemma 16.4 for S as above.

Consequently, by referring to the end of proof of Proposition 16.2, we can take
DS = 1/MS = √

2/n in the conclusion of Corollary 16.6, for T and S as above,
hence the theorem.
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17. Locally 6-large simplices of groups

In this section we recall and adapt to our needs some notions and facts
related to simplices of groups and simple complexes of groups. We will use them
in the construction described in Section 18. Since both simplices of groups and
simple complexes of groups are special cases of complexes of groups, some parts
of this section repeat the exposition of Section 6 in these special cases. However,
the exposition here is more detailed, more self-contained, and free from several
technicalities. For example, we do not mention twisting elements gστρ, since they
are all assumed to be trivial, i.e. equal to the units in the corresponding groups.
On the other hand, we discuss explicitly the notions related to developability. We
also change slightly the notation to make it more convenient for our purposes. The
reader is advised to consult Section 12 in Part II of [BH] as a standard reference.

For a simplex ∆, denote by P∆ the poset of all nonempty faces of ∆, includ-
ing ∆ itself, and denote by < the relation of being a proper (sub)face. A simplex of

groups G over ∆ is a family Gσ : σ ∈ P∆ of groups, together with a family of injec-
tive homomorphisms ψστ : Gτ → Gσ for any pair σ < τ , such that ψστ ◦ψτρ = ψσρ

whenever σ < τ < ρ. We will call groups Gσ local groups of G and homomorphisms
ψστ structure homomorphisms of G .

A morphism m : G → F from a simplex of groups G over ∆ to a group F
is a family mσ : σ ∈ P∆ of homomorphisms mσ : Gσ → F which agree with the
structure homomorphisms of G in the sense that mτ = mσ ◦ ψστ whenever σ < τ .
Given a simplex of groups G , denote by Ĝ the direct limit of G , i.e. the quotient
group of the free product of the groups Gσ : σ ∈ P∆ by the normal subgroup
generated by relations of form g = ψστ(g) for all structure homomorphisms ψστ

and all g ∈ Gτ . Denote by iG : G → Ĝ the canonical morphism to the direct limit.
This morphism has (or can be characterized by) the universal property saying that
any morphism m : G → F factors through iG , i.e. there is the homomorphism
m̂ : Ĝ → F such that m = m̂ ◦ iG . The homomorphism m̂ is unique and we call it
the homomorphism induced by m.

A morphism m : G → F is locally injective if all its homomorphisms mσ are in-
jective. It is surjective if the target group F is generated by the union

⋃
σ∈P∆

mσ(Gσ ).
A simplex of groups is developable if it admits a locally injective morphism (equiva-
lently, if its canonical morphism to the direct limit is locally injective). Locally in-
jective and surjective morphisms can be characterized in terms of the direct limit
as being identical to the compositions q ◦ iG , where q : Ĝ → Ĝ/N is the quotient
homomorphism and N ⊂ Ĝ is a normal subgroup such that N ∩ (iG )σ(Gσ ) = {1}
for any σ ∈ P∆.

Given a locally injective morphism m : G → F of a simplex of groups G
over ∆, we define the development D(G , m) of G with respect to m as follows.
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First, identify the local groups Gσ with their images mσ(Gσ) ⊂ F, and the struc-
ture homomorphisms ψστ with the inclusions of the corresponding subgroups of F.
Define an equivalence relation ∼ on the set ∆ × F by

(x, g) ∼ ( y, h) iff x = y ∈ σ and g−1h ∈ Gσ for some face σ of ∆.

Let [x, g] be the equivalence class of (x, g), [σ, g] := {[x, g] : x ∈ σ}, and put

D(G , m) = ∆ × F/ ∼.

We obtain then a multi-simplicial complex with the faces [σ, g]. These are injective
images of σ × {g} under the quotient map of ∼. This complex is multi-simplicial
and not just simplicial since the intersection of its faces is in general a union of
faces and not just a single face. This construction is called the Basic Construction
in [BH, II.12]. We insist on using a coarser simplicial structure than [BH] (who
use the barycentric subdivisions of our faces).

Most of the simplices of groups in this paper will satisfy the property that the
local group G∆ (where ∆ is the underlying simplex of G ) is trivial, i.e. G∆ = {1}.
We will call such simplices of groups ∂-supported. The next proposition gathers gen-
eral and well known properties of developments. We present these properties in the
restricted context of ∂-supported simplices of groups, which simplifies formulations
and is sufficient for the purposes of this paper. These results (including their proofs)
can be found in [BH, II.12] (compare also [ JS1, Proposition 3.2]).

17.1. Proposition. — Let G be a ∂-supported simplex of groups over a simplex ∆,

and let m : G → F be a locally injective morphism.

(1) The formula h[x, g] = [x, hg] defines an action of the group F on D(G , m) by

automorphisms. The quotient map of this action is equal to the map induced by the

projection ∆ × F → ∆. The action is without inversions, i.e. a face preserved by

an automorphisms is fixed pointwise. The stabilizer of a face [σ, g] is a conjugation

Gg
σ := gGσg−1 (we still view the local groups of G as subgroups of F, via m).

(2) D(G , m) is finite (as a complex) if and only if F is a finite group.

(3) D(G , m) is locally finite if and only if the groups Gσ for all faces σ of ∆ are

finite. In fact, for local finiteness it is sufficient to require that the groups Gv for all

vertices v of ∆ are finite.

(4) D(G , m) is connected if and only if the morphism m is surjective.

(5) D(G , m) is a pure complex, i.e. it is the union of its top dimensional faces.

(6) D(G , m) is gallery connected if and only if the subgroups Gs for all codimension-1

faces s of ∆ generate F. Recall that gallery connected means that any two top

dimensional faces are connected by a finite sequence of top dimensional faces such that

consecutive faces have common codimension-1 subface.
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(7) D(G , m) is a pseudomanifold if and only if in addition to (3) and (6) the local

groups Gs of G are isomorphic to Z2 for all codimension-1 faces s of ∆.

(8) D(G , m) is an orientable pseudomanifold if and only if in addition to (7) there is

a homomorphism ρ : F → Z2 whose restriction ρs : Gs → Z2 is an isomorphism for

all codimension-1 faces s of ∆ (equivalently, ρ ◦ ms : Gs → Z2 is an isomorphism

for any such s).

The next proposition describes the fundamental group of the development
of a surjective morphism, in terms of the direct limit. Recall that we denote by
m̂ : Ĝ → F the homomorphism induced by a morphism m : G → F. Here we do
not need to assume that G is ∂-supported.

17.2. Proposition. — Let G be a developable simplex of groups and let m : G → F
be a locally injective and surjective morphism. Then π1(D(G , m)) = ker(m̂ : Ĝ → F). In

particular, D(G , m) is simply connected iff F = Ĝ and m = iG .

We will call development D(G , iG ) the universal development of a developable
simplex of groups G (or the universal covering of G ), and denote it shortly by G̃ .

We now turn to discussion of links in developments. Given a simplex ∆ and
its face σ , the link ∆σ of ∆ at σ is the spherical simplex composed of the unit
vectors tangent to ∆ and orthogonal to σ at a fixed interior point of σ . The face
poset P∆σ

of ∆σ canonically identifies with the subposet (P∆)σ in P∆ consisting of
all faces τ such that τ properly contains σ .

If K is a multi-simplicial complex, and σ is its face, then the link Kσ is
a union of the links τσ for all faces τ of K that properly contain σ , glued together
into a multi-simplicial complex according to the equivalence relation on the disjoint
union induced by the natural inclusions τσ ⊂ τ ′

σ for all pairs τ ⊂ τ ′.
Given a simplex of groups G over ∆ and a face σ of ∆, consider the restric-

tion Gσ := G |(P∆)σ and view it as a simplex of groups over the link simplex ∆σ .
Put also iσ := {ψστ : τ ∈ (P∆)σ} and note that iσ : Gσ → Gσ is a morphism. Ob-
serve that since all the homomorphisms ψστ are injective, iσ is a locally injective
morphism.

17.3. Proposition. — Let G be a simplex of groups over ∆ and let m : G → F
be a locally injective morphism. Then, given a face [σ, g] in the development D(G , m), the

link D(G , m)[σ,g] is isomorphic to the development D(Gσ , iσ ). Moreover, this isomorphism is

equivariant with respect to the action of the stabilizing subgroup Stab(F, [σ, g]) on D(G , m)[σ,g]
and the action of Gσ on D(Gσ , iσ ).

We will call D(Gσ , iσ ) the local development (or the link) of G at σ . This
coincides with the notion of the link L(G , σ) as defined in Section 6.
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Following Definition 6.2, we say that a simplex of groups is locally k-large

if all of its local developments are k-large (in particular truly simplicial, not just
multi-simplicial). Theorem 6.1 implies then the following.

17.4. Corollary. — For k ≥ 6, any locally k-large simplex of groups is developable.

17.5. Remark. — Note that if the homotopical systole of a development of
a locally k-large simplex of groups is ≥ 3 (which is a nontrivial condition for
a multi-simplicial complex), then it is simplicial. To see this, observe first that
a multi-simplicial complex X with simplicial links, which is not simplicial, must
have a double edge (i.e. two edges with both endpoints coinciding). Second, note
that the cycle consisting of these two edges is homotopically nontrivial in X. This
follows from the fact that the universal covering of X is simplicial since, being
locally 6-large, it can be obtained as the union of a sequence of small extensions
(see Section 4), starting from a single simplex, and all these extensions together
with their union are simplicial. This implies that the homotopical systole of X
is 2, justifying the initial statement.

Our last goal in this section is to recall terminology related to the so called
simple complexes of groups (examples of which are simplices of groups), and to
formulate some results which extend the already mentioned results for simplices of
groups. We will need these concepts and facts in the next section, in the proof of
Proposition 18.3.

Let X be a simplicial complex and let F be a group acting on X by auto-
morphisms. A subcomplex K ⊂ X is a strict fundamental domain of this action if
the restricted quotient map K → F\X is an isomorphism of simplicial complexes.
Given an action of F that admits a strict fundamental domain K, we associate
to any face σ of K a group Gσ := Stab(F, σ), the stabilizer of σ in F. In fact,
due to the existence of a strict fundamental domain, the stabilizer Gσ fixes the
simplex σ pointwise. We have obtained a system {Gσ} of groups with inclusions
Gτ ⊂ Gσ whenever σ ⊂ τ . We call this system the simple complex of groups associated

to the action of F.
A simple complex of groups G over a simplicial complex Q is a system of groups

Gσ associated to the faces of Q , equipped with a system of injective homomor-
phisms ψστ : Gτ → Gσ for all pairs σ ⊂ τ , such that ψστ ◦ ψτρ = ψσρ whenever
σ ⊂ τ ⊂ ρ.

The notions of a morphism to a group, local injectivity and surjectivity of
a morphism, developability of G and development D(G , m) associated to a locally
injective morphism m : G → F have straightforward extensions from the case of G
being a simplex of groups to that of a simple complex of groups. It is then clear
that if m : G → F is a locally injective morphism then G is equivalent (isomorphic
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as a simple complex of groups) to the simple complex of groups associated to
the action of F on the development D(G , m). Thus, developability of G can be
characterized geometrically by saying that G is isomorphic to a simple complex of
groups associated to an action. Moreover, the obvious analogue of Proposition 17.2
holds if the underlying complex Q of a simple complex of groups G is connected.

Now we extend the notion of the local development, as defined above for
simplices of groups, to arbitrary simple complexes of groups. Let G be a simple
complex of groups over Q and let σ be a face of Q . Consider the link Q σ of Q
at σ , and for any face τ in Q σ denote by τ̄ the corresponding face of Q properly
containing σ . Define then a simple complex of groups Gσ = ({G′

τ}, {ψ ′
τρ}) over

Q σ by putting G′
τ := Gτ̄ and ψ ′

τρ := ψτ̄ρ̄. Define also a locally injective morphism
iσ : Gσ → Gσ consisting of homomorphisms (iσ )τ : G′

τ → Gσ given by (iσ )τ := ψστ̄ .
The development D(Gσ , iσ ), equipped with the action of Gσ , is then called the
local development of G at σ (or the link of G at σ ). If G is developable then the
local developments of G occur as links in the developments of G for all injective
morphisms. More precisely, if m : G → F is an injective morphism, and [σ, g]
a face in the corresponding development D(G , m), then the link D(G , m)[σ,g], with
the induced action of the stabilizing subgroup of F, is equivariantly isomorphic to
the local development D(Gσ , iσ).

A simple complex of groups over Q is locally 6-large if all of its local devel-
opments are 6-large. Clearly, by Theorem 6.1, every locally 6-large simple complex
of groups is developable.

18. Extra-tilability

In this section we introduce a condition called extra-tilability which allows
one to construct, inductively with respect to the dimension, simplices of groups
admitting finite k-large developments (for arbitrary k ≥ 6). A construction of such
developments is presented in Section 19. In this section we indicate various useful
consequences of the introduced condition.

18.1. Definition. — A simplicial complex X equipped with an action of a group G
by simplicial automorphisms is extra-tilable if the following conditions are satisfied:

(1) the action is simply transitive on top-dimensional simplices of X and its quotient is

a simplex (equivalently, any top-dimensional simplex is a strict fundamental domain

for this action);

(2) X is 6-large;

(3) for any face σ of X the ball B1(σ, X) is a strict fundamental domain for the

restricted action of a subgroup of G on X.
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A simplex of groups G is locally extra-tilable if local developments of G equipped
with actions of the corresponding local groups are all extra-tilable.

18.2. Example.

(1) The Coxeter (or dihedral) group Dn = 〈s1, s2|s2
1, s2

2, (s1s2)
n〉 with n = 6k or

n = ∞, with its canonical action on the corresponding Coxeter complex
(i.e. a division of S1 into 2n segments), is obviously extra-tilable.

(2) Let X be the Coxeter complex of the triangle Coxeter group (6, 6, 6),
which may be viewed as a triangulation of the hyperbolic plane by regular
triangles with angles π/6. It follows from Poincare’s Theorem that the
action of this group on X is extra-tilable.

(3) The quotient simplex of groups associated to the action in (2) is locally
extra-tilable.

Note that condition (1) in Definition 18.1 implies that the complex of groups
associated to the action of G on X is a ∂-supported simplex of groups. Conse-
quently, X is equivariantly isomorphic to a development of this simplex of groups.
For this reason, we will often speak of extra-tilable developments of ∂-supported sim-
plices of groups (rather than of extra-tilable complexes).

The reader can easily verify that if the pair X, G is extra-tilable then links
of X equipped with the actions of the corresponding stabilizers in G are extra-
tilable. Consequently, a simplex of groups that admits an extra-tilable development
is locally extra-tilable. The next proposition provides the converse of this statement,
together with a much stronger property that will be crucial in our later arguments.

18.3. Proposition. — Let G be a locally extra-tilable simplex of groups. Then the

action of the direct limit Ĝ on the universal development G̃ = D(G , iG ) has the following

property: each n-ball B = Bn(σ, G̃ ) in G̃ , for any natural number n, is a strict fundamental

domain for the action of a unique subgroup HB of Ĝ . In particular, G̃ equipped with the

action of Ĝ is extra-tilable.

To prove Proposition 18.3 we need the following.

18.4. Lemma. — Let G be a ∂-supported locally 6-large simplex of groups over

a simplex ∆, and let m : G → G be a locally injective and surjective morphism. Suppose

that for some simplex σ ⊂ D(G , m) the ball B := B1(σ, D(G , m)) is a strict fundamental

domain for the action of a subgroup H < G. Denote by H the simple complex of groups over

B associated to the action of H on D(G , m), and by ν : H → H the associated morphism.

Then

(1) ν is surjective, i.e. H is generated by the union of the images νσ(Hσ) of the local

groups Hσ of H ;

(2) B determines the subgroup H uniquely.
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Proof. — To prove part (1), note first that the development D(G , m) is, by
surjectivity of m, connected. Since any simple complex of groups with connected
development is surjective, we get surjectivity of H by the fact that D(H , ν) =
D(G , m).

The proof of (2) goes by induction on n = dim ∆. Let H′ < G be another
subgroup for which B is a strict fundamental domain. Denote by H ′ the simple
complex of groups over B associated to the action of H′ on D(G , m), and by H′

σ

its local groups at simplices σ of B.
Suppose first that dim ∆ = 1. Since G is ∂-supported, the local groups of

both H and H ′ at edges are all trivial. We will show that for every vertex v of
B the local groups Hv and H′

v coincide. By applying (1), this property implies that
H = H′, hence (2).

The equality Hv = H′
v is obvious for vertices v from the interior of B (i.e.

vertices of the central simplex σ ), since then both groups are trivial. For the re-
maining vertices v both these groups coincide with the stabilizer of G at v, which
one easily deduces from the fact that there is exactly one edge in B adjacent to v
(and from simple transitivity of G on the edges of D(G , m)).

In the general case, note that for any simplex σ of B both groups Hσ , H′
σ

act on the link [D(G , m)]σ = D(Gσ , mσ) with the strict fundamental domain Bσ .
The inductive assumption implies that Hσ = H′

σ , and again the proof is concluded
by applying (1).

Proof of Proposition 18.3. — Note that since G is locally extra-tilable, it is
in particular locally 6-large. Thus, by Corollary 17.4, G is developable and hence
it makes sense to speak of the universal development G̃ = D(G , iG ). By Propo-
sition 17.2, G̃ is simply connected, and hence it is a systolic complex. For any
ball B in G̃ consider a simple complex of groups H = ({Hσ }, {φτσ}) over B
defined as follows. For any face σ of B consider the link (G̃ )σ and the action
of the stabilizer Stab(Ĝ , σ) on it. Let σ0 be the image of σ under the quotient
map G̃ → G̃ /Ĝ = ∆. Then the action of Stab(Ĝ , σ) on (G̃ )σ is equivariantly iso-
morphic to the action of the local group Gσ0 of G on the local development
D(Gσ0, iσ0) and hence it is extra-tilable. By strict convexity of balls (Corollary 7.9.2),
the link Bσ either coincides with (G̃ )σ or has a form B1(τ, (G̃ )σ) for some simplex
τ ⊂ (G̃ )σ . In any case, by local extra-tilability of G , Bσ is a strict fundamental
domain for the action of a subgroup of Stab(Ĝ , σ) on (G̃ )σ . Moreover, due to
Lemma 18.4, this subgroup is unique, and we take it as the local group Hσ in H .
Note that if σ ⊂ τ then Hτ ⊂ Hσ . In fact, Hτ can be identified as a subgroup of
Hσ more precisely as follows. Denote by τ ′ the face in the link (G̃ )σ correspond-
ing to τ . Then, viewing Hσ as acting on (G̃ )σ , Hτ is equal to the stabilizer of τ ′

in this action. We take as the structure homomorphism φστ for H the inclusion
homomorphism from Hτ to Hσ , for any relevant pair σ, τ of simplices in B.
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Consider the morphism j : H → Ĝ given by the inclusions of the local
groups Hσ in Ĝ , and denote by ĵ : Ĥ → Ĝ the corresponding homomorphism
between the direct limits. Since j is locally injective, H is developable and we
denote by H̃ the universal development of H . The ball B, identified with the
subcomplex [B, 1] in H̃ , is clearly a strict fundamental domain for the action
of Ĥ on H̃ . To prove the proposition, we will show that there is a ĵ-equivariant
isomorphism between G̃ and H̃ that is identical on B. If this is the case, B is
a strict fundamental domain for the subgroup HB := ĵ(Ĥ ) < Ĝ .

Let J : H̃ → G̃ be a simplicial map given by J([x, g]) := ĵ(g) · x for any
x ∈ B (where x on the right lies in B ⊂ G̃ ). From what was said above about
local groups of H , it follows that the local development of H at a face σ of B
is equivariantly isomorphic to the link (G̃ )σ acted upon by the group Hσ . This
implies that the map J induces isomorphisms at links of all simplices in H̃ , and
hence it is a covering. Since both complexes H̃ and G̃ are connected and simply
connected, it follows that J is an isomorphism as required.

It remains to prove uniqueness of HB. In view of the strong convexity of B
(see Corollary 7.12), this follows by the argument as in the proof of Lemma 18.4.2.
Thus the proposition follows.

The above arguments yield in fact the following more general result.

18.5. Proposition. — Let G be a locally extra-tilable simplex of groups and let Q
be any strongly convex subcomplex in the universal development G̃ = D(G , iG ). Then Q is

a strict fundamental domain for the action of a unique subgroup HQ of the direct limit Ĝ .

In the next proposition only part (2) is important for further applications.
We include part (1) to indicate the relationship of the phenomena that we obtain
with residual finiteness of involved groups.

18.6. Proposition. — Let G be a locally extra-tilable simplex of finite groups. Then

(1) the direct limit group Ĝ is residually finite;

(2) for any natural k there is an injective morphism m : G → F into a finite group F
such that we have sysh[D(G , m)] ≥ k.

Proof. — Let ∆ be the underlying simplex of G . To prove (1), recall that
a group G is residually finite if for any g ∈ G with g �= 1 there is a normal
subgroup N < G of finite index such that g /∈ N. Let g ∈ Ĝ , g �= 1. Consider a ball
B in the universal development G̃ centered at [∆, 1] and containing [∆, g]. By
Proposition 18.3, there is a subgroup HB < Ĝ for which B is a strict fundamental
domain. Note that g /∈ HB because each orbit of HB intersects B only once.
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Moreover, since G̃ is locally finite, B is finite (as a complex), and since Ĝ acts
simply transitively on top-dimensional faces of G̃ , it follows that HB is a finite
index subgroup of Ĝ . Thus the normalization N = ⋂

h∈Ĝ hHBh−1 has also finite
index in Ĝ , and clearly g /∈ N. This finishes the proof of part (1).

To prove (2), consider the face [∆, 1] in G̃ and the ball B = Bk([∆, 1], G̃ )

centered at this face. Observe that a polygonal path in G̃ connecting a vertex
of [∆, 1] with a vertex outside B has length greater than k (i.e. consists of more
than k edges). Let HB be the subgroup of Ĝ for which B is a strict fundamental
domain, and let N = ⋂

h∈Ĝ hHBh−1. As before, N is a finite index subgroup in Ĝ .
Recall that for each vertex v of ∆ the local group Gv is identified with the

stabilizer of Ĝ at [v, 1] (in its action on G̃ ). Thus, since G is ∂-supported, we
have Gv ∩ HB = {1}, and hence also Gv ∩ N = {1}. It follows that the composition
G → Ĝ → Ĝ/N is a locally injective morphism to a finite group Ĝ/N. We take
this morphism as m and the quotient Ĝ/N as F.

We now estimate from below the homotopical systole of the development
D(G , m). Since N is a subgroup of HB, the orbit of a vertex v of [∆, 1] under
the action of N on G̃ intersects B only at v. Thus the polygonal distance between
v and any other vertex from this orbit is greater than k (in fact, this distance is
even ≥ 2k, but we don’t need this sharper estimate). It follows that any homo-
topically nontrivial closed polygonal path in D(G , m) passing through a vertex of
[∆, 1] has length > k. On the other hand, D(G , m) is acted upon by the quo-
tient group Ĝ/N and this action is transitive on top-dimensional faces. Thus any
homotopically nontrivial path in D(G , m) can be mapped by an automorphism of
D(G , m) to a path that intersects [∆, 1]. Thus, the homotopical systole of D(G , m)

is greater than k, which finishes the proof of part (2).

We say that a locally injective morphism m : G → F from a simplex of
groups G is extra-tilable if the development D(G , m) acted upon by the group F is
extra-tilable. Obviously, to have a extra-tilable morphism, a simplex of groups has
to be locally extra-tilable. The next proposition, a culmination of the results in
this section, will be the key technical tool in the arguments involved in the main
construction presented in the next section.

18.7. Proposition. — Let G be a locally k-large simplex of finite groups, for some

k ≥ 6, and suppose G is locally extra-tilable. Then G admits an extra-tilable morphism

µ : G → E to a finite group E such that the development D(G , µ) is k-large.

Proof. — Since it follows from our assumptions that G is locally 6-large, let
m : G → F be a locally injective morphism to a finite group F as prescribed
by Proposition 18.6.2, i.e. such that sysh[D(G , m)] ≥ k. Then D(G , m) is clearly
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k-large (see Corollary 1.5). Denote by K = ker m̂ the kernel of the homomorphism
m̂ : Ĝ → F induced by m, and note that K has finite index in Ĝ .

For any face σ ⊂ G̃ consider the ball Bσ := B1(σ, G̃ ) and the subgroup
Hσ < Ĝ for which Bσ is a strict fundamental domain. Clearly, Hσ is a finite index
subgroup for each σ . Consider the intersection K ∩ ⋂

σ⊂[∆,1] Hσ , which is still of
finite index in Ĝ , and normalize it to get a finite index normal subgroup N
of Ĝ . Put E := Ĝ/N and denote by µ the natural morphism from G to E. Since
N ⊂ K, the development D(G , µ) is a covering of the development D(G , m) and,
since the latter is k-large, the former is k-large too. It remains to prove that µ is
extra-tilable.

By the fact that [∆, 1] is a fundamental domain for the action of Ĝ on G̃ ,
for any face σ ⊂ G̃ there is a face σ0 ⊂ [∆, 1] and an element g ∈ Ĝ such
that Hσ = gHσ0g

−1. In particular, since the subgroup N is contained in Hσ0 and
normal, it is also contained in Hσ . Denote by p : G̃ → D(G , µ) the covering map
induced by the quotient homomorphism Ĝ → E = Ĝ/N. It follows that the image
p(Bσ) is a strict fundamental domain for the action of the subgroup Hσ/N ⊂ E
on D(G , µ). Since the images p(Bσ) for all simplices σ in G̃ exhaust the balls of
radius 1 centered at faces in D(G , µ), the action of E on D(G , µ) is extra-tilable,
and the proposition follows.

19. Existence of k-large developments

In this section we give a rather general construction of finite k-large devel-
opments of simplices of groups in arbitrary dimension. This construction allows to
get examples of complexes with various interesting properties. Our main result is
the following.

19.1. Proposition. — Let ∆ be a simplex and suppose that for any codimension 1

face s of ∆ we are given a finite group As. Then for any k ≥ 6 there exists a ∂-supported

simplex of finite groups G = ({Gσ}, {ψστ}) and a locally injective and surjective morphism

m : G → F to a finite group F such that Gs = As for any codimension 1 face s of ∆ and

(1) G is locally extra-tilable;

(2) the development D(G , m) is ( finite and) k-large.

Proof. — We will construct appropriate groups Gσ inductively with respect
to the codimension of σ in ∆. Here we will view F as G∅, the group associated
to the “empty face” ∅ of ∆ of codimension dim(∆) + 1.

By the requirements of the proposition, we have to put G∆ = {1} and
Gs = As for all faces s of codimension 1. This gives the starting point for our
induction. Suppose that finite groups Gσ are already defined for all faces σ of
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codimension ≤ i, together with injective homomorphisms ψστ as required. Suppose
also that for all such σ the following condition (which will be an additional part
of the inductive hypothesis) is satisfied: The groups Gτ : σ ⊂ τ form a simplex of
groups G σ over the link ∆σ and the homomorphisms ψστ form a locally injective
and surjective morphism mσ : G σ → Gσ such that the development D(G σ , mσ ) is
k-large and locally extra-tilable. Note that for i = 1 these inductive assumptions
are fulfilled. For any face ρ of codimension i + 1 in ∆ consider the simplex of
groups G ρ over the link ∆ρ formed of the groups Gσ : ρ ⊂ σ . By the inductive
assumptions, this gives a locally k-large ∂-supported and locally extra-tilable sim-
plex of groups. By Proposition 18.7, there is a surjective extra-tilable morphism
µ : G ρ → E to a finite group E such that the development D(G ρ, µ) is k-large.
By putting Gρ := E and ψρσ := µσ we get the inductive hypothesis for i +1. This
finishes the proof.

19.2. Corollary. — For each natural n and each k ≥ 6 there exists an n-dimensional

compact simplicial pseudomanifold that is k-large. Moreover, this pseudomanifold can be obtained

to be orientable.

Proof. — In view of Proposition 17.1.7, the first statement in the corollary
follows from Proposition 19.1 by putting As = Z2 for all codimension 1 faces s.

To ensure orientability, we need to modify slightly constructions in the proofs
of Propositions 19.1 and 18.7. Recall from Proposition 17.1.8 that a necessary
condition for the development D(G , m) associated to a morphism m : G → F to
be an orientable pseudomanifold is the existence of a homomorphism r : F → Z2

such that the composed morphism r◦m maps the local groups Gs at codimension 1
faces s isomorphically to Z2. Thus, when constructing local groups Gσ , we need to
have additional homomorphisms rσ : Gσ → Z2, forming together a morphism from
G to Z2, such that the compositions rσ ◦ ψσ s : Gs → Z2 are isomorphisms. By the
inductive assumption concerning this property, there is always a homomorphism
r̂σ : Ĝ σ → Z2 from the direct limit of the simplex of groups G σ , with the desired
property. Thus, to have the appropriate rσ , it is necessary that the normal subgroup
N giving Gσ as the quotient Ĝ σ/N is contained in the kernel of r̂σ . Since this
can be obtained by passing to a finite index subgroup in the previously chosen N,
the corollary follows.

We mention further consequences of Corollary 19.2.

19.3. Corollary.

(1) For each natural n there exists a developable simplex of groups whose fundamental

group is Gromov-hyperbolic, virtually torsion-free, and has virtual cohomological dimen-

sion n.
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(2) For each natural n there exists an n-dimensional compact simplicial orientable pseudo-

manifold whose universal cover is CAT(0) with respect to the standard piecewise

euclidean metric.

(3) For each natural n and each real number d > 0 there exists an n-dimensional compact

simplicial orientable pseudomanifold whose universal cover is CAT(−1) with respect

to the piecewise hyperbolic metric for which the simplices are regular hyperbolic with

edge lengths d .

Proof. — By Corollary 19.2, for every natural n there exists an n-dimensional
compact simplicial orientable pseudomanifold X which is 7-large. It is obtained as
a development of a certain simplex of finite groups G . The fundamental group
Γ of X is a subgroup of finite index in the fundamental group of G , and it is
torsion-free. To see this, note that X is aspherical (Theorem 4.1.1), and hence it is
a classifying space for Γ. Since X is finite dimensional, Γ cannot contain a finite
subgroup. Moreover, since (being a compact pseudomanifold of dimension n) X has
nontrivial cohomology in dimension n, the group Γ has cohomological dimension
equal to n. Finally, by Corollary 2.2, the group Γ is Gromov hyperbolic. This
proves (1).

Parts (2) and (3) follow from Corollary 19.2 in view of Theorem 14.1.

Parts (2) and (3) of the above corollary give an affirmative answer, in arbi-
trary dimension n, to a question raised by D. Burago [Bu, p. 292]. The answer
for n = 3 has been given in [BuFKK].

As one more application we note that Corollary 19.2 allows an alternative
approach to the main result of our paper [ JS1] stating that for each natural n
there exists a Gromov hyperbolic Coxeter group with virtual cohomological di-
mension n. As we have shown in [ JS1], to construct such a group it is suffi-
cient to construct a compact orientable n-dimensional pseudomanifold which satis-
fies “flag-no-square” condition (which is equivalent to 5-largeness). Since k-largeness
for k ≥ 6 implies 5-largeness, we get such pseudomanifolds by the construction of
Proposition 19.1 (improved as in the proof of orientability in Corollary 19.2), which
is different from the construction in [ JS1].

20. Non-positively curved branched covers

In this section we use the idea of extra-tilability to show the existence of
nonpositively curved finite branched covers for a class of compact piecewise eu-
clidean pseudomanifolds that contains all manifolds. This answers a question of M.
Gromov. Using the same method, we show that any finite complex K is homo-
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topy equivalent to the classifying space for proper G-bundles of a CAT(−1) (hence
Gromov hyperbolic) group G. This answers a question of I. Leary.

We start by recalling some terminology. A chamber in a simplicial pseudoman-
ifold is any of its top-dimensional faces. A simplicial pseudomanifold is normal if
all of its links are gallery-connected (See Proposition 17.1.6). We borrow the term
“normal” from M. Goresky and R. MacPherson [GMcP]). The property of being
normal does not depend on a triangulation of a pseudomanifold (see Section 4.1
in [GMcP]). Manifolds are obviously normal.

A branched covering of a simplicial pseudomanifold X is a simplicial pseudo-
manifold Y equipped with a nondegenerate simplicial map p : Y → X which is
a covering map outside codimension 2 skeleta.

The main results in this section are the following two theorems.

20.1. Theorem. — Let X be a compact connected normal simplicial pseudomanifold

with a piecewise euclidean (respectively, piecewise hyperbolic) metric. Then X has a compact

branched covering Y which is nonpositively curved (respectively, has curvature κ ≤ −1) with

respect to the induced piecewise constant curvature metric.

20.2. Theorem. — For any finite complex K there is a CAT(−1) space X and

a group G acting properly discontinuously and cocompactly by isometries on X, so that the

quotient G\X is homotopy equivalent to K.

Both theorems above are corollaries to a stronger technical result contained
in Proposition 20.3. To formulate this proposition we need more definitions. We
say that a simplex of groups G over a simplex ∆, with local groups Gs at all
codimension 1 faces s isomorphic to Z2, is symmetric if it satisfies the following
conditions:

(1) the local groups Gσ are generated by their local subgroups at faces of
codimension 1 (i.e. at those codimension 1 faces s which contain σ );

(2) any automorphism f of the underlying simplex ∆ extends to an auto-
morphism ϕ of G .

Note that, due to condition (1), automorphisms ϕ from condition (2) are uniquely
determined by automorphisms f .

A morphism m : G → F is a symmetric morphism if m is surjective, G is
a symmetric simplex of groups, and for any automorphism ϕ of G as in (2) there
is an automorphism aϕ of F such that m◦ϕ = aϕ ◦m. Note that, due to surjectivity
of m, automorphisms aϕ are uniquely determined by automorphisms ϕ.

A symmetric development is the development associated to a symmetric morphism.
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20.3. Proposition. — Given any k ≥ 6, every finite family of compact connected normal

simplicial pseudomanifolds {Xi} of the same dimension has a common compact branched covering

Y which is an extra-tilable symmetric development of a simplex of finite groups, and which is

k-large. Moreover, for each Xi there is a group Γi of simplicial automorphisms of the universal

cover Ỹ of Y such that Xi is isomorphic to the quotient Γi\Ỹ.

Before giving a proof of the proposition, we show how it implies The-
orem 20.1. The proof of Theorem 20.2, together with discussion of its conse-
quences, occupies the last part of the section (after the proof of Proposition 20.3).

Proof of Theorem 20.1 (using Proposition 20.3). — Given a metric pseudomanifold
as in the theorem, denote by Π the set of all shapes of simplices of X and note
that Π is finite. Clearly, any branched covering Y of X equipped with the lifted
metric satisfies the condition Shapes(Y) ⊂ Π. Let k ≥ 6 be a natural number
associated to Π as in the assertion of Theorem 14.1. By Proposition 20.3, X has
a compact branched covering Y which is k-large, and hence also locally k-large. By
Theorem 14.1, Y is then nonpositively curved (respectively, has curvature κ ≤ −1),
as required.

Proof of Proposition 20.3. — We use induction with respect to the dimension
n of pseudomanifolds Xi.

For n = 1, each Xi is a triangulation of the circle, and we denote by li the
number of edges in Xi. Let L be a common multiple of all numbers li and 12.
Put Y to be the triangulation of the circle consisting of L edges. Then Y is as
asserted in the proposition. To see this, note that due to divisibility of L by 12,
Y is an extra-tilable development of the ∂-supported edge of groups with groups
Z2 at vertices. The other assertions of the proposition are in this case obvious.

We now pass to the case of arbitrary dimension n. Consider the family X
of all links at vertices in all pseudomanifolds Xi. Due to compactness of Xi’s,
this family is finite. Moreover, since links of normal pseudomanifolds are normal,
X consists of compact connected normal pseudomanifolds of the same dimension
n − 1. By applying inductive hypothesis to the family X , we obtain an extra-
tilable symmetric morphism m : G → F from an (n − 1)-dimensional simplex of
finite groups G to a finite group F such that the development D(G , m) satisfies all
assertions of the proposition relative to X . Let H be an n-dimensional simplex of
groups described as follows. For local groups at faces of codimension < n take the
local groups of G at faces of the same codimension (which are all isomorphic due
to symmetry of G ). For local groups at vertices take the group F. Symmetry of
G and m allows to take as structure homomorphisms for H the homomorphisms
occurring in G and in the morphism m. The so obtained simplex of finite groups
H is clearly symmetric, locally k-large and locally extra-tilable. Since, being locally
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k-large, H is developable, consider its universal development H̃ . Our next aim is
to show that H̃ is a common branched covering of pseudomanifolds Xi. However,
since H̃ is not compact, this will not yet finish the proof.

Fix one of the pseudomanifolds Xi, a chamber C in it, and any isomorphism
p0 : D0 → C of some chamber D0 of H̃ with C. We will show that p0 can be
extended to a branched covering p : H̃ → Xi. For this, note that any gallery
γ in H̃ starting at the chamber D0 determines uniquely the map pγ : D → Xi

from the final chamber D in γ , by means of unfolding γ on Xi starting with p0.
Then, since (by Proposition 17.1.6) H̃ is gallery connected, we define p separately
on each chamber D in H̃ by putting p|D = pγ for some choice of a gallery
γ connecting D0 to D. To see that p is well defined we need to show that
pγ : D → Xi does not depend on the choice of γ . Equivalently, we need to show
that for any gallery γ starting and terminating at D0 we have pγ = p0.

Since H̃ is simply connected, γ can be expressed, up to cancellation of
back and forth subpaths, as the concatenation of elementary closed galleries started at
D0, i.e. galleries of form

D0, D1, ..., Dl, D1
l , D2

l , ..., Dm
l , Dl, Dl−1, ..., D0

with chambers Dl, D1
l , ..., Dm

l contained in the residue of a single vertex of H̃ .
Clearly, it is then sufficient to show that pγ = p0 for any elementary closed gallery
γ started at D0. This however follows directly from the fact that links of H̃
at vertices, which are all isomorphic to the development D(G , m), are symmetric
branched coverings of the links of Xi at vertices. Thus, the map p is well defined,
and the fact that it is a branched covering follows easily from its definition.

Denote by Sym(H̃ ) the full group of simplicial automorphisms of H̃ . Due
to symmetry of H̃ , and rigidity implied by the fact that H̃ is a pseudomani-
fold, this group is a semidirect extension of the direct limit Ĥ by the group
of automorphisms of the underlying simplex of H . We will now show that for
each Xi there exists a subgroup Γi < Sym(H̃ ) such that the quotient Γi\H̃ is
isomorphic to Xi.

Consider the set p−1(C) of all chambers in H̃ which are mapped through
p on C. Clearly, this set contains our distinguished chamber D0. For any chamber
D ∈ p−1(C) consider the isomorphism uD : D0 → D such that p ◦ uD = p0. Clearly,
uD can be extended uniquely to an automorphism of H̃ , and we denote this au-
tomorphism by gD. Moreover, each automorphism gD obviously commutes with p.
Consequently, the set {gD : D ∈ p−1(C)} coincides with the group of all automor-
phisms of H̃ that commute with p. We denote this group by Γi and note that it
acts simply transitively on the set p−1(C). Furthermore, for any chamber C′ adja-
cent to C along a codimension 1 face, and for any chamber D ∈ p−1(C), there
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is exactly one chamber D′ ∈ p−1(C′) adjacent to C′. Moreover, the assignment
D → D′ establishes 1-1 correspondence between the sets of chambers p−1(C) and
p−1(C′). It follows that the group Γi acts simply transitively on the set p−1(C′).
Since Xi is gallery connected, the same argument gives the same conclusion for the
set p−1(C′′), for any chamber C′′ of Xi. This implies that the map P : Γi\H̃ → Xi

induced by p is an isomorphism, as required. It is also important to note that,
since each Xi is compact, each of the groups Γi has finite index in Sym(H̃ ).

We want now to find a compact development of H which will be k-large
and which still be a branched covering of all Xi’s. Since H is locally k-large
and locally extra-tilable, by Proposition 18.7 there exists an extra-tilable morphism
µ : H → E to a finite group E such that the development D(H , µ) is k-large.
Denote by K the kernel of the induced homomorphism iµ : Ĥ → E. Take the
intersection K ∩ ⋂

i Γi and normalize it in Sym(H̃ ) to get a normal subgroup
N in Ĥ for which the induced morphism µ : H → Ĥ /N is symmetric (due
to normalization in Sym(H̃ )), still extra-tilable, and whose development D(H , µ)

is still k-large (last two properties due to the inclusion N < K). Since, due to
the inclusions N < Γi, D(H , µ) is still a common branched covering of Xi’s, the
proposition follows.

Proof of Theorem 20.2. — Let Z be a compact simplicial manifold with bound-
ary having the same homotopy type as the complex K. It can be obtained for
example by embedding K in RN, and taking its regular neighbourhood in a suf-
ficiently fine triangulation. Denote by X the double of Z, i.e. the closed manifold
obtained by gluing two copies of Z by the identity map of their boundaries. It fol-
lows from Proposition 20.3 that for any k ≥ 6 there is a k-systolic pseudomanifold
Ỹ and a group Γ acting simplicially, properly discontinuously, and cocompactly on
it, such that X is isomorphic to the quotient Γ\Ỹ. By Theorem 14.1, taking k suf-
ficiently large, we can arrange that Ỹ is CAT(−1) with respect to some piecewise
hyperbolic metric with regular simplices, and then Γ acts by isometries.

Denote by i : X → X the involution which exchanges the copies of Z, used
in the construction X, fixing their common boundary. We claim that, if Ỹ is taken
to be the universal development H̃ as in the proof of Proposition 20.3, then i
can be lifted to an isomorphism ĩ of Ỹ. To see that, fix a chamber C in X and
consider lifts D and D′ of C and i(C) respectively, to H̃ . Now, take as ĩ the
isomorphism from the group Sym(H̃ ) induced by the map i0 : D → D′ such that
i0 commutes with i through the covering H̃ → X. Due to rigidity implied by
the fact that we deal with gallery-connected pseudomanifolds, ĩ is a lift of i as
required. Using ĩ we get the extension G of Γ, of index 2, whose action on H̃
projects to the action of Z2 generated by i on X. Consequently, the quotient
G\H̃ is isomorphic to Z = Z2\X, and the theorem follows.
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Theorem 20.2 has interesting corollaries. We refer to [LN] for the back-
ground on Corollary 20.4.

20.4. Corollary. — Any finite complex K is homotopy equivalent to the classifying space

for proper G-bundles of a CAT(−1) (hence Gromov hyperbolic) group G.

20.5. Corollary. — Any homotopy type of a finite complex occurs as the quotient

G\Rd(G) of the Rips’ complex Rd(G) (with sufficiently large d) of some Gromov hyperbolic

group G.

Corollary 20.5 follows from Proposition 20.3 in view of the following ob-
servation. Given a CAT(−1) space X and a group G acting on X properly
discontinuously cocompactly by isometries, for sufficiently large d , the action of
G on the Rips’ complex Rd(G) is equivariantly homotopy equivalent to the ac-
tion on X. This follows from the fact that if G is Gromov hyperbolic then, for
sufficiently large d , the quotient of the Rips’ complex G\Rd(G) is the classifying
space for proper G-bundles, and the latter is uniquely determined up to homotopy
equivalence (see [MS]).

Corollaries 20.4 and 20.5 give answer to questions of Ian Leary (see [QGGT,
Question 1.24] and [L]).
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[S] J. ŚWIA̧TKOWSKI, Regular path systems and (bi)automatic groups, Geom. Dedicata, 118 (2006), 23–48.

T. J.
Department of Mathematics,
The Ohio State University,
231 W 18th Ave,
Columbus, OH 43210, USA
tjan@math.ohio-state.edu

J. Ś.
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