
Nonpositively curved developments of billiards

Tadeusz Januszkiewicz, Jacek Świa̧tkowski
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Abstract. We prove existence of compact nonpositively (negatively) curved developments
for a large class of Euclidean (hyperbolic) billiards in arbitrary dimension, including all
convex polytopal ones.

Introduction

Given a trajectory in a polytopal billiard table, one can develop it into a straight line
by attaching a mirror image of the table at each point the trajectory hits the boundary,
and instead of reflecting, continuing through into the other copy. The developed trajectory
is surrounded by a sequence of adjacent copies of the billiard table. Regardless of its
simplicity, it is an important idea relating billiards to geodesic flows.

It is reasonable to ask for more, namely for developments of billiards which work
simultaneously for all trajectories. These are spaces obtained from a number of copies
of the table, so that each side of each copy is glued to a side of exactly one other copy
by an identity map (this produces spaces called pseudomanifolds). Such a construction
allows to develop all trajectories, perhaps to closed or self-intersecting piecewise straight
lines, as long as they do not hit corners of the table. To incorporate other trajectories into
the picture, it is convenient to demand that the development of the table is nonpositively
curved, and extend (non-uniquely) trajectories to geodesics. It was suggested by D. Burago
[Bu], that such developments, if compact, may be useful in proving results about complexity
of billiards trajectories.

Existence of nonpositively curved compact developments is fairly clear for two-dimen-
sional tables, and was established in [BuFKK] for a class of three-dimensional tables (con-
taining all convex polytopes). In [SNPC] existence of such developments was established
for the case when the table is a simplex of any dimension. The present paper, extending
methods of [SNPC], proves existence of compact nonpositively curved developments for a
large class of tables in arbitrary dimension, including convex polytopal tables. We state
our main result at the end of this introduction, after discussing certain technical terms
involved in its formulation.
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The method we use both in [SNPC] and in the present paper is based on the notion
of combinatorial nonpositive curvature and on new constructions of developable simplices
of groups. Spaces that result from our constructions, the so called k-systolic simplicial
complexes, are not necessarily nonpositively curved, and their study has uncovered several
exotic phenomena in geometric group theory. But if the integer parameter k is large enough
(depending on dimension), then n-dimensional k-systolic simplicial complexes are CAT (0)
for the standard piecewise Euclidean metric (see [SNPC]). The idea of finding sufficient
combinatorial conditions on a polyhedral complex implying that it is CAT (0) is taken up
again in the present paper.

From a different point of view, the present paper provides a rich source of new CAT (κ)
spaces for κ = −1, 0, 1. Since these arise from simplices of groups, they come with large
groups of isometries, thus are interesting for geometric group theory. It is this aspect
which makes us consider as developments a class of spaces going beyond pseudomanifolds,
in which a copy of a table may be adjacent to more than one other copy along a face of
codimension 1.

We focus on billiard tables with constant curvature −1, 0, 1, even though it would
be natural to allow tables with variable curvature, with an appropriate convexity of the
boundary. We do not discuss this more general setting here, since it requires addressing
additional technical points. We do not see it to bring essentially new challenges. The
interplay between metric and combinatorial (or group theoretical) aspects of the question
is subtle and rewarding already in the constant curvature case, which does cover many
examples. However the ideas and techniques presented here can definitely be applied
in a more general setting, for example to pseudomanifolds with boundary and piecewise
constant curvature metrics. Hopefully this leads to interesting applications.

Also, we do not go in any details into the dynamical aspects of the subject due to lack
of expertise.

To state our main result we need at least rough description of the terms involved. We
refer the reader to Section 4 for precise definitions and for slightly more general statements
(Theorems 4.4 and 4.5). For us, a billiard table is a riemannian manifold of constant
sectional curvature with stratified boundary, with all strata geodesically convex, and such
that near boundary the table looks locally like an intersection of half-spaces. Stratification
of the table is locally injective if different germs of local strata belong to different (global)
strata. One does indeed need some assumption of this type, as examples from Section 5,
of tables with no nonpositively curved developments show.

Main Theorem. Let B be a Euclidean (respectively, hyperbolic) compact billiard table
with convex polytopal boundary and with locally injective stratification. Then B admits
a finite nonpositively curved (respectively, with curvature ≤ −1) development.

The paper is organized as follows. In Section 1 we discuss polytopal complexes and the
(combinatorial) condition of k-largeness for them. In Section 2 we extend from simplicial
to polytopal piecewise spherical complexes results of [SNPC] asserting that k-large with
sufficiently large k implies CAT (1) property of the piecewise spherical metric. In Section 3
we show how to induce large developments of arbitrary polytopes from large developments
of simplices. Existence of the former follows then from existence of the latter (proved in
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[SNPC]). In Section 4 we define our billiard tables and construct their developments. In
Section 5 we gather some further remarks and speculations pertaining to the geometric
side of the subject of developing billiards. Finally, two appendices are intended to make
the paper self contained. The first of them is just a review of systolic complexes. The
second presents a lemma concerning face complexes, a tool used to define and study the
notion of k-largeness.

Acknowledgments. The first author was partially supported by the NSF grants DMS-
0405825 and DMS-0706259. The second author was partially supported by the MNiSW
grants 2 P03A 017 25 and N201 012 32/0718.

1. Large polytopal complexes.

A convex polytope π is the convex hull of a finite set of points in a real vector space.
Faces of π are also convex polytopes and form the face poset of π. In this section we pay
no attention to metric aspects of convex polytopes, viewing them merely as combinatorial
objects.

A polytopal complex X is a space obtained by glueing convex polytopes via combina-
torial equivalences of their faces (i.e., homeomorphisms preserving cell structure), together
with the decomposition of X into faces (so that all faces of all polytopes forming X are
faces of X). We also assume that:
(1) different faces of the same polytope are not identified;
(2) intersection of two faces of X is either empty or a single face of X.
Note that simplicial complexes are examples of polytopal complexes.

1.1 Definition (Face complex). A set of faces of a polytopal complex X is joinable if
all these faces are contained in a single face of X. Given a joinable set S of faces, the face
spanned by S is the unique minimal face of X containing all faces of S (uniqueness follows
from assumption (2) above). The face complex Φ(X) of a polytopal complex X is the
simplicial complex whose vertices [τ ] correspond to all faces τ of X and whose simplices
correspond to all sets of faces that are joinable in X.

The notions of joinability and a face complex have been invented by F. Haglund and
the second author, superseding our earlier attempts. The face complex is a “fattening” of
a polytopal complex X to a simplicial complex, in particular it preserves the homotopy
type of X (though this fact plays no role in the present paper). The face complex of X
seems to be a useful substitute of the barycentric subdivision, and it allows to apply certain
simplicial techniques to study X.

Now we discuss links in polytopal complexes. Given a polytope π and its proper
face σ, the link πσ of π at σ is defined as follows. Consider the poset of those faces of π
which properly contain σ. This poset is the face poset of a convex polytope of dimension
dim π − dim σ − 1, and we take this polytope as the link πσ. Given a polytopal complex
X and its face σ, the link Xσ of X at σ is the polytopal complex obtained from polytopes
πσ, for all faces π of X properly containing σ, by glueing them by natural identifications
of faces induced by the corresponding identifications of faces in X. Accordingly, the face
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poset of Xσ is isomorphic to the face poset of those faces of X that properly contain σ
(this can be used as alternative definition of the link Xσ).

Consider the simplicial map eσ : Φ(Xσ) → Φ(X) defined at vertices by eσ([πσ]) = [π].
By definition of the link, this clearly extends to the well defined simplicial map on Φ(Xσ),
which is injective.

1.2 Lemma. For any face σ of a polytopal complex X the image of the face complex
Φ(Xσ) under the map eσ is a full subcomplex of Φ(X).

Proof: Let [τ i
σ] : i = 1, . . . ,m be a set of vertices in Φ(Xσ), and suppose that their images

[τ i] span a simplex of Φ(X) which we denote δ. Then the set τ i : i = 1, . . . ,m is joinable
in X, and it spans a face in X which we denote τ . Since this face contains σ, it follows
that the set τ i

σ : i = 1, . . . ,m is joinable in Xσ (all faces from this set are contained in
τσ). Consequently, vertices [τ i

σ] : i = 1, . . . ,m span a simplex of Φ(Xσ), denoted β. Since
δ = eσ(β), the lemma follows.

We now use the face complex Φ(X) to define the notion(s) of largeness for polytopal
complexes X. This is both based on and generalizes the notion of largeness for simplicial
complexes, introduced under the name of k-largeness (with integer parameter k ≥ 4) in
[SNPC]. We recall this in Appendix A to this paper. In [SNPC] largeness serves as a local
curvature-like condition satisfied by links of a simplicial complex, leading to rich theory of
simplicial nonpositive curvature. In this paper we use largeness in the context of spherical
polytopal complexes, to get criteria of CAT (1) condition for them (see Section 2).

1.3 Definition. Given integer k ≥ 4, a polytopal complex X is k-large if its face complex
Φ(X) is a k-large simplicial complex.

1.4 Remark. Observe that, due to Proposition B.1 from Appendix B, the above defi-
nition of k-largeness applied to simplicial complexes coincides with the original simplicial
definition of k-largeness from [SNPC].

1.5 Lemma. If X is a k-large polytopal complex then any of its links Xσ is also k-large.

Proof: Φ(Xσ) is isomorphic with its image under the map eσ in Φ(X), and the latter is
full in Φ(X) due to Lemma 1.2. Since Φ(X) is k-large, and since any full subcomplex of a
k-large simplicial complex is k-large (see Lemma A.2(1) from Appendix A), it follows that
Φ(Xσ) is k-large, hence the lemma.

2. Large implies CAT (1).

In this section we deal with metric aspects of polytopal complexes. We focus on piece-
wise spherical complexes and study the relationship between their combinatorial largeness
and metric largeness (the CAT (1) property). Results of this section both use and general-
ize analogous results from Section 14 in [SNPC] concerning piecewise spherical simplicial
complexes. We refer the reader to [BH], Sections I.7 and II.5, for a detailed background
concerning spherical polyhedral complexes.

A spherical convex polytope is the convex hull of a finite set C of points in the unit
sphere (we assume that C is contained in some open hemisphere). Faces of a convex
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spherical polytope π are also convex spherical polytopes, and we view π as equipped with
the family (poset) of its faces.

A spherical polytopal complex is a polytopal complex formed by glueing spherical
convex polytopes via certain isometric identifications of their faces. We will assume that
the set Shapes(X) of isometry classes of the faces of a spherical polytopal complex X is
finite. Due to this assumption, each spherical polytopal complex is equipped with the
piecewise spherical metric for which it is a complete geodesic metric space ([BH], Theorem
7.50).

Links of spherical polytopal complexes carry the structure of spherical polytopal com-
plexes as follows. Given a face σ in a spherical convex polytope π contained in a unit
sphere S, consider an interior point p of σ and the set of all unit tangent vectors to π at
p that are orthogonal to σ and point towards π (i.e. an initial segment of a geodesic in S
started at p in the direction of such vector is contained in π). This set of vectors forms
a spherical convex polytope which is combinatorially the link πσ and which we take as
spherical link of π at σ. The above procedure applied to all polytopes in the link Xσ of a
spherical polytopal complex clearly turns this link into spherical polytopal complex.

We now turn to the CAT (1) condition. We are interested in it since it characterizes
links in nonpositively (respectively, negatively) curved piecewise Euclidean (respectively,
hyperbolic) complexes (see [BH], Theorem 5.2 on p. 206, and Section 4 of this paper). A
convenient characterization of the CAT (1) condition for piecewise spherical complexes is
given by the following (see [BH], Theorem 5.4(7) on p. 206).

2.1 Criterion. If X is spherical polytopal complex then X is CAT (1) iff neither X nor
any of its spherical links contains a closed geodesic of length less than 2π.

Our main result in this section is the following.

2.2 Theorem. Let Π be a finite set of isometry classes of spherical convex polytopes.
Then there is a natural number k ≥ 4, depending only on Π, such that if X is a k-large
spherical polytopal complex with Shapes(X) ⊂ Π then X is CAT (1).

Remarks.
(1) For the case of spherical simplicial complexes Theorem 2.2 has been proven in [SNPC],

Theorem 14.1(1). Proof of Theorem 2.2 we present follows the same lines as the proof
of Theorem 14.1 in [SNPC], but requires additional arguments.

(2) In combination with the existence results from Section 3, Theorem 2.2 gives many
examples of CAT (1) spaces.

(3) Estimates for k in our proof of Theorem 2.2 (below in this section) are not explicit.

To prove Theorem 2.2 we need two preliminary results, which both require some
preparation. Given a closed geodesic γ in a spherical polytopal complex X, the size of
γ is the number of maximal nontrivial subsegments in γ contained in a single face of X.
Note that this number is always finite since any local geodesic of finite length in X is
the concatenation of a finite number of segments, each contained in a single face ([BH,
Corollary 7.29, p. 110]). The following theorem is a reformulation of [BH, Theorem 7.28,
p. 109] or [B, Lemma 1].
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2.3 Proposition. Given a finite set S of isometry classes of convex spherical polytopes,
there is a natural number N (depending on S) such that if a closed geodesic γ in a spherical
polytopal complex X with Shapes(X) ⊂ S has length less than 2π then its size is less than
N .

A polytopal complex X is ∞-large if its face complex Φ(X) is ∞-large (see Appendix
A). The next result is an extension of Proposition 14.3 of [SNPC] from simplicial to poly-
topal setting. Proof presented below is based on different arguments and is much shorter.

2.4 Proposition. Let X be a spherical polytopal complex and suppose it is ∞-large.
Then X contains no closed local geodesic.

Proof: Suppose to the contrary that X contains a closed local geodesic γ. Split γ into
maximal segments contained in a single face of X, and denote these segments by a1, . . . , am.
Denote initial point of any segment ai by pi−1 and terminal point by pi, with p0 = pm. For
i = 1, . . . ,m, let τi be the face of X containing pi in its interior, and let σi be the face of
X containing the interior of ai in its interior. Note that τi−1, τi are both the proper faces
of σi and that they span σi. This means in particular that for each i vertices [τi], [τi+1] in
the face complex Φ(X) are distinct and connected with an edge.

Consider the immersed cycle in the 1-skeleton of Φ(X) defined by the sequence
[τ0], [τ1], . . . , [τm] of vertices, and denote it by γ̂. We claim that γ̂ is a 2-geodesic cy-
cle. (Both concepts of an immersed cycle and a 2-geodesic cycle are defined in Appendix
A, just before Lemma A.3).

To see this, note first that no two faces σi, σi+1 in X are joinable. This is because faces
of X are convex and the local geodesic γ enters interior of σi+1 immediately after leaving
interior of σi. Consequently, no two consecutive edges of γ̂ are contained in a simplex of
Φ(X).

But since the face complex Φ(X) is ∞-large it does not admit a 2-geodesic immersed
cycle (by Lemma A.3 of Appendix A). This concludes the proof.

Proof of Theorem 2.2:
Denote by S the union of Π and the set of isometry classes of all spherical links of all

polytopes from Π. Consider all spherical polytopal complexes K, with Shapes(K) ⊂ S,
containing a closed geodesic γ of length less than 2π. For any geodesic γ as above let Lγ

be the union of those faces of K whose interiors are intersected by γ. Put Φγ to be the
full span of the face complex Φ(Lγ) in Φ(K). Note that simplicial complexes Φγ , for all
geodesics γ as above, have universally bounded number of vertices. Indeed, this number is
bounded by N ·M , where N is the number asserted by Theorem 2.3 and M is the maximal
number of faces in polytopes from S. Consequently, up to simplicial isomorphism there
are only finitely many simplicial complexes Φγ .

For a flag complex Φγ denote by l(Φγ) the largest integer k ≥ 4 for which Φγ is k-
large. Note that every flag complex is 4-large and that, due to Proposition 2.4, Φγ is never
∞-large. Thus the number l(Φγ) is well defined. (We do not care for those complexes Φγ

which are not flag.)
Since there are only finitely many simplicial complexes Φγ (up to simplicial isomor-

phism), define
k = max{l(Φγ) : Φγ is flag}+ 1.
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We will show that this k is as required.
Let X be a k-large spherical polytopal complex with Shapes(X) ⊂ Π, and suppose

it is not CAT (1). Then, due to Criterion 2.1, certain complex K equal either to X or to
some link of X contains a closed geodesic γ of length less than 2π. These K and γ lead to
one of the complexes Φγ as above.

However, since X is k-large, K is also k-large (by Lemma 1.5), and thus the face
complex Φ(K) is also k-large. Since Φγ is by definition a full subcomplex in Φ(K), it is
also k-large by Lemma A.2(1), and in particular it is flag. This contradicts the definition
of k above, proving that X is CAT (1), as required.

3. Induced polytopes of groups

In this section we return to combinatorial (and not metric) aspects of polytopal com-
plexes. We deal with polytopes of groups and their developments, in particular showing
existence of many finite and k-large developments of this form, for arbitrary convex poly-
topes and arbitrary k. Our approach builds upon a similar result for simplices (Theorem
A.5 in Appendix A), via a natural operation of inducing polytopes of groups from simplices
of groups (described below).

The notions of a simplex of groups and its development with respect to a morphism,
as described in Appendix A, extend without any change to those of a polytope of groups
equipped with a morphism and its development. Analogues of Properties A.4 also hold in
this setting.

We now describe the notion of a polytope of groups induced from a simplex of groups.
Let π be a convex polytope, and let ∆π be the simplex whose codimension 1 faces are in
a (fixed) bijective correspondence with the codimension 1 faces of π. For a face τ of π, let
s1, . . . , sm be the codimension 1 faces of π that contain τ . Put τ̂ to be the intersection of
the codimension 1 faces of ∆π corresponding to s1, . . . , sm (we also declare π̂ = ∆π).

Let G = {Gσ} be a simplex of groups over ∆π equipped with a morphism m : G → G.
Define a polytope of groups H over π by putting Hτ := Gτ̂ for any face τ of π. Put also
H := G and denote by µ the corresponding morphism from H to H. We call the polytope
of groups H and the morphism µ obtained from G and m as above the induced polytope of
groups and the induced morphism. To emphasize the fact that H and µ are determined by
π, G and m, we use the following notation: Gπ := H and mπ := µ.

Our main result in this section is the following

3.1 Proposition. Let π be a convex polytope and ∆π the associated simplex. Let G be
a simplex of groups over ∆π equipped with a morphism m : G → G, and suppose that
the development D(G,m) is a k-large simplicial complex, for some k ≥ 4. Let Gπ be the
induced polytope of groups over π, and mπ : Gπ → G the induced morphism. Then the
development D(Gπ,mπ) is a k-large polytopal complex.

Proof: To avoid too many indices in the notation, we denote the induced polytope of
groups Gπ by H, and the induced morphism mπ by µ. We need to show that the develop-
ment D(H, µ) is a polytopal (and not multi-polytopal) complex, and that it is k-large.

First assertion above follows from the following.
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Claim 1. Intersection of any two faces in the development D(H, µ) is either empty or a
single face.

Proof of Claim 1: Let [τ1, g1], [τ2, g2] be faces in D(H, µ), and suppose they both contain
a face [ρ, g]. Consider the simplices [τ̂1, g1] and [τ̂2, g2] in D(G,m). Their intersection
contains the simplex [ρ̂, g], and thus is nonempty. Since D(G,m) is a true simplicial
complex, the intersection [τ̂1, g1] ∩ [τ̂2, g2] is a simplex, and we denote it [δ, h].

Now, since [ρ̂, g] is a face of [δ, h], it follows that g−1h ∈ Gρ̂, and thus [ρ̂, g] = [ρ̂, h].
Let s1, . . . , sm be the codimension 1 faces of π such that δ = ŝ1 ∩ . . . ∩ ŝm. Since [ρ̂, h] is
a face of [δ, h], ρ̂ is contained in all ŝi above. Put σ := s1 ∩ . . . ∩ sm and note that, by
what was said above, it is a face of π that contains ρ. But then the face [σ, h] in D(H, µ)
contains [ρ, h] = [ρ, g].

Since the inclusion [ρ, g] ⊂ [σ, h] holds, by the same argument, for every face [ρ, g] in
the intersection [τ1, g1] ∩ [τ2, g2], the claim will follow if we prove that [σ, h] ⊂ [τ1, g1] ∩
[τ2, g2]. To do this, note that by definition of σ we have σ̂ ⊂ δ. Consequently, for i = 1, 2
we have σ̂ ⊂ δ ⊂ τ̂i, which implies that σ ⊂ τi. Furthermore, since [δ, h] ⊂ [τ̂i, gi], we have
h−1gi ∈ Gδ < Gσ̂ = Hσ, and hence [σ, h] = [σ, gi] ⊂ [τi, gi]. Thus Claim 1 follows.

To prove k-largeness of D(H, µ), consider a map i from the vertex set of Φ(D(H, µ))
to the vertex set of D(G,m), defined by

i([[τ, g]]) = [[τ̂ , g]].

This map extends uniquely to a well defined injective simplicial map i : Φ(D(H, µ)) →
Φ(D(G,m)) (we omit straightforward arguments).

Claim 2. The image of Φ(D(H, µ)) under i is a full subcomplex in Φ(D(G,m)).

Proof of Claim 2: Let [τ1, g1], . . . , [τm, gm] be a set of faces in D(H, µ) such that the
vertices

i([[τ1, g1]]), . . . , i([[τm, gm]])

span a simplex of Φ(D(G,m)). We need to show that the set [τ1, g1], . . . , [τm, gm] is joinable.
By definition of a face complex, the set of simplices [τ̂1, g1], . . . , [τ̂m, gm] in D(G,m)

corresponding to vertices i([[τ1, g1]]), . . . , i([[τm, gm]]) in Φ(D(G,m)) is joinable. It follows
that these simplices are all contained in a single simplex, say [ρ, g], in D(G,m). By the
definition of D(G,m), this means that for i = 1, . . . ,m we have g−1gi ∈ Gτ̂i

, and hence
[τ̂i, gi] = [τ̂i, g]. This however implies that [τi, gi] = [τi, g] for i = 1, . . . ,m, and thus this
set of faces is joinable in D(H, µ), since they are all contained in the face [π, g]. Hence
Claim 2.

Returning to the proof of Proposition 3.1, note that since the simplicial complex
D(G,m) is k-large, by Proposition B.1 of Appendix B its face complex Φ(D(G,m)) is also
k-large. Moreover, by Claim 2 above, the face complex Φ(D(H, µ)) is isomorphic with a
full subcomplex of Φ(D(G,m)), and the latter is k-large by Lemma A.2(1) of Appendix A.
Thus Φ(D(H, µ)) is also k-large, which finishes the proof.

Proposition 3.1 is all we need for the arguments in the next section. However, for
clarity of the picture, we state below an existence result concerning polytopes of groups
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having large developments. It follows directly from Proposition 3.1 and from the related
result for simplices of groups, namely Theorem A.5 of Appendix A.

3.2 Corollary. Let π be a convex polytope and suppose that for any codimension 1 face s
of π we are given a finite group As. Then for any k ≥ 4 there exist a finite groups H, and
a polytope of groups H = {Hσ : σ is a face of π} equipped with a morphism µ : H → H,
such that Hπ = {1}, Hs = As for any codimension 1 face s of π, and the development
D(H, µ) is a k-large polytopal complex.

4. Developments of billiards.

In this section we state and prove the main result of the paper, Theorem 4.5, about
existence of finite nonpositively curved developments for a large class of billiards. This
is a more detailed version of Main Theorem from Introduction. We start with recalling
the terminology related to (or fixing our setting for) developments of billiards, and with
describing the class of billiards we deal with.

The class of billiard tables we are interested in are the constant curvature billiards
with convex polytopal boundary. By this we mean manifolds B of arbitrary dimension,
equipped with constant curvature riemannian metric (spherical, Euclidean or hyperbolic),
with boundary ∂B decomposed into totally geodesic (closed) strata, and such that locally
near a boundary point it is isometric to a neighborhood of a boundary point in a convex
polytope in the corresponding constant curvature model space (i.e. sphere, Euclidean space
or hyperbolic space of the same dimension). Examples of such billiard tables are convex
polytopes in model spaces, but there are many more. We make, at least temporarily, no
restriction neither on the topology of B and its boundary strata, nor on their compactness
or the number of strata.

A development of a billiard table B as above is a space D obtained by glueing together
a family of copies of B via identity maps between some of their corresponding codimension
1 strata, so that each codimension one stratum s in each copy of B is glued to at least one
codimension one stratum in some other copy of B.

More formally, given a billiard table B, let S be the set of its codimension one (bound-
ary) strata. Let Λ be a set, and suppose that for each s ∈ S we are given an equivalence
relation ∼s on Λ. We assume that every equivalence class in ∼s has at least two elements.
For each b ∈ B denote by ∼b the equivalence relation on Λ which is the transitive closure
of the union of all relations ∼s, such that b ∈ s. (In particular, if b is an interior point of
B then all equivalence classes of ∼b are singletons.) These data define the development D
of B as

D = B × Λ/ ∼
where the equivalence relation ∼ is defined by (b, λ) ∼ (b′, λ′) iff b = b′ and λ ∼b λ′.

Note that D is a stratified space, with strata equal to images (under the quotient
map) of strata in the copies of B (where each copy of B is also viewed as a stratum). Note
that, due to the way of glueing copies of B, strata of D are injective images of strata of
copies of B, and thus they are homeomorphic to the latter.

By definition of a development D, every stratum of codimension one is contained in
at least two top-dimensional strata (images of copies of B). To make statements of some
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properties of the development (like the one in the previous sentence) easier, we introduce
the following terminology. A chamber of a development D is any of its top-dimensional
strata. The thickness of a development D at a stratum s of codimension 1 is the number
of chambers containing s. Note that, by definition, thickness of D at any stratum is ≥ 2.
Special case of developments are pseudo-manifolds. A development D is a pseudo-manifold
if its thickness at every codimension 1 stratum equals 2.

Of special interest to us, mainly because of our methods of construction, are devel-
opments with respect to a group. These are those developments D which are equipped
with an action of a group G such that some (and hence any) chamber of D is a strict
fundamental domain for this action.

Having chosen a chamber of a development D with respect to a group G, we identify
it with the table B. The pair (D,G) defines then a table of groups over B equipped with a
morphism to G, in the same way as in Appendix A a pair (Z,G) defines a simplex of groups
with a morphism. Moreover, a general notion of a table of groups over B equipped with
a morphism is introduced in the same way as for a simplex. It allows to define, again in
the same way, development of a table of groups with respect to a morphism, which satisfies
properties analogous to Properties A.4. In particular, each development with respect to
a group for B is a development of a table of groups over B with respect to a morphism.
We will use the same notation G, m and D(G,m) for tables of groups, morphisms, and for
their developments.

Next result, the easy proof of which we omit, expresses thickness of a development
of a table of groups G = {Gσ : σ is a stratum of B} over B with respect to a morphism
m : G → G, as well as the number of its chambers, in terms of groups Gσ and G.

4.1 Lemma. Let G = {Gσ} be a table of groups over a constant curvature billiard table
B with convex polytopal boundary, equipped with a morphism m : G → G. Then
(1) for any stratum s of codimension 1 in B, and for any g ∈ G, thickness of the develop-

ment D(G,m) at the stratum [s, g] is equal to the index (Gs : GB);
(2) the number of chambers in the development D(G,m) is equal to the index (G : GB).

Since in our applications we will be mainly interested in tables of groups over B for
which the group GB is trivial, we formulate some consequences of Lemma 4.1 for this case.

4.2 Corollary. Let G = {Gσ} be a table of groups over a constant curvature billiard table
B with convex polytopal boundary, equipped with a morphism m : G → G. Suppose also
that GB = {1}. Then
(1) for any stratum s of codimension 1 in B, and for any g ∈ G, thickness of the develop-

ment D(G,m) at the stratum [s, g] is equal to the order |Gs| of the group Gs;
(2) D(G,m) is a development for B iff for each stratum s of codimension 1 the group Gs

has order ≥ 2;
(3) D(G,m) is a pseudo-manifold iff for each stratum s of codimension 1 the group Gs

has order 2;
(4) the number of chambers in the development D(G,m) is equal to the order |G| of the

group G.

We now turn to discussing piecewise constant curvature metric on a development of a
billiard B. In order to ensure existence of such metric, we assume that B is compact. Due
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to [BH, Theorem 7.19, p. 105], under this assumption, the above metric is well defined and
turns any development of B to a geodesic metric space. Our main concern in this paper
is to construct nonpositively (respectively, negatively) curved finite developments (or even
developments with respect to a group) for compact Euclidean (respectively, hyperbolic)
billiards. A convenient way of recalling definitions of curvature bounds uses spherical links.

For constant curvature billiard tables B as above, and for their developments D,
spherical links Bσ and Dσ at all their strata σ are defined in the same way as for constant
curvature polytopal complexes (see Section 2 for the case of spherical polytopal complexes,
or [BH, I.7] for the general case). Beware that we view these links as spherical polytopal
complexes, keeping the information about both the piecewise spherical metric and the
decomposition into cells, as their structure.

We recall the following local criterion for curvature bounds.

4.3 Criterion (see [BH, Theorem 5.5, p. 207]).
(1) If D is a development of a compact Euclidean billiard table B with convex polytopal

boundary, then D is nonpositively curved iff links of D at all its strata are CAT (1).
(2) If D is a development of a compact hyperbolic (i.e. with constant curvature −1)

billiard table B with convex polytopal boundary, then D has curvature ≤ −1 iff links
of D at all its strata are CAT (1).

One more condition for billiard tables B that we need in our main theorem is local
injectivity of the stratification. This is somewhat unusual condition for people working
with billiards, but it is very natural from the group theoretic perspective. To define this
condition, for any stratum σ in B consider the natural map iσ from the set of faces of
the link polytope Bσ to the set of strata of B. Stratification of a billiard table is locally
injective if the maps iσ, for all strata σ, are injective. This condition is clearly satisfied
by polytopal billiard tables, but likewise for many others. It is also not difficult to find
examples of billiard tables B with convex polytopal boundary and with not locally injective
stratification, for which no development is nonpositively curved (see Example 5.1).

We say that, given an integer q ≥ 2, a development D of a billiard table B has uniform
thickness q if thickness of D at any codimension 1 stratum equals q. A slightly more general
result than Main Theorem of the introduction is the following.

4.4 Theorem. Let B be a compact Euclidean (respectively, hyperbolic) billiard table
with convex polytopal boundary and with locally injective stratification. Then, for any
integer q ≥ 2 there exists a finite nonpositively curved (respectively, with curvature ≤ −1)
development (with respect to a group) D for B, with uniform thickness q.

Note that in case q = 2 above theorem provides developments that are pseudomani-
folds. In fact, in view of Corollary 4.2, Theorem 4.4 is a special case of the following result,
which gives also developments with variable thickness.

4.5 Theorem. Let B be a Euclidean (respectively, hyperbolic) compact billiard table with
convex polytopal boundary and with locally injective stratification. Suppose also that for
any stratum s of codimension 1 in B we are given a finite group As. Then there exists
a finite group G and a table of groups GB = {GB

σ } over B equipped with a morphism
mB : GB → G, such that GB

B = {1}, GB
s = As for any codimension 1 stratum s, and the

development D(GB ,mB) is nonpositively curved (respectively, has curvature ≤ −1).
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Proof of Theorem 4.5: Consider links Bσ of the billiard table B, and recall that they
are spherical convex polytopes. It follows from Theorem 2.2 that for each stratum σ in
∂B there is an integer kσ ≥ 4 such that if X is a kσ-large development of Bσ then X is
CAT (1). Put

k := max{kσ : σ is a stratum of ∂B}.

Let ∆B be a simplex whose codimension 1 faces are in a (fixed) bijective correspon-
dence with codimension 1 strata of B. For a stratum σ of B, let s1, . . . , sm be the codi-
mension 1 strata of B that contain σ. Put σ̂ to be the intersection of the codimension 1
faces of ∆B corresponding to s1, . . . , sm (we also declare B̂ = ∆B).

Let G = {Gσ} be a simplex of groups over ∆π equipped with a morphism m : G → G,
as prescribed by Theorem A.5, with groups Aŝ := As for codimension 1 strata s in B, and
for k as above. Define a table of groups GB = {GB

σ } over B by putting GB
σ := Gσ̂ for any

stratum σ of B. Denote also by mB : GB → G the corresponding morphism.
We claim that these GB and mB are as required. The fact that GB

B = {1} and
GB

s = As follows directly from the definition of GB . In view of Criterion 4.3, it remains to
show that spherical links in the development D(GB ,mB) are CAT(1).

To prove the latter, we need two lemmas. First lemma below expresses links in the
developments of tables of groups as developments of certain polytopes of groups (so called
local developments in [BH, II.12]). Note that this lemma applies also to simplices of groups,
as special cases of tables of groups.

Lemma 1 (compare [BH, Proposition 4.11, p.558] or [SNPC, Proposition 19.3]). Let
G = {Gσ} be a table of groups over B equipped with a morphism m : G → G. Given
a stratum σ in ∂B, consider the link Bσ, which is a convex spherical polytope. Define a
polytope of groups Gσ = {Gσ,τσ} over Bσ by putting Gσ,τσ := Gτ for all strata τ containing
σ. Consider also the corresponding morphism mσ : Gσ → Gσ. Then, for any g ∈ G, the
link of D(G,m) at the stratum [σ, g] is isomorphic to the development D(Gσ,mσ).

Next result is a straightforward consequence of definitions of the objects involved, and
we omit its proof.

Lemma 2. Under notation as in the proof of Theorem 4.5 above, for any stratum σ in
∂B the polytope of groups (GB)σ is induced from the simplex of groups Gσ̂ (in the sense
defined in Section 3, just before Proposition 3.1). More precisely, the map sσ → ŝσ̂ is a
bijective correspondence between the codimension 1 faces in the links Bσ and (∆B)σ̂, so
that we may view (∆B)σ̂ as the simplex ∆Bσ associated to the polytope Bσ. Under this
interpretation, we have equalities τ̂σ = τ̂σ̂, and the corresponding equalities for groups.

Returning to the proof of Theorem 4.5, take any stratum [σ, g] in the development
D(GB ,mB). By Lemma 1 above, the link at this stratum is isomorphic and isometric to
the development D(GB

σ ,mB
σ ). We need to show that this development is CAT (1). Note

that, in view of the choice of k as above, it is sufficient to show that the development
D(GB

σ ,mB
σ ) is k-large.

Note that, again by Lemma 1 above, the development D(Gσ̂,mσ̂) is a simplicial com-
plex isomorphic to the link of the development D(G,m) at the simplex [σ̂, 1]. It follows
from Lemma A.2(2) that the development D(Gσ̂,mσ̂) is k-large. In view of Lemma 2 above
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and Proposition 3.1, this implies that the development D(GB
σ ,mB

σ ) is k-large, hence the
theorem.

5. Examples, remarks, speculations.

In this section we discuss sharpness of the assumptions and possible generalizations
of the main results of this paper, i.e. Theorems 4.4 and 4.5. However, it should be clear
that the most interesting class of examples is that of convex polytopal billiards, and it is
covered by our results.

First, we describe a simple example showing that our assumption about local injec-
tivity of stratification is in general necessary.

5.1 Example. Let B be the unit Euclidean 3-dimensional cube with the top face identified
with the bottom one via vertical translation followed by the rotation through angle π/2
around the center of the face. Then B is a Euclidean billiard table with convex polytopal
boundary. However, its boundary consists of just two strata, one in each of the dimensions
1 and 2. In particular, if σ is the 1-dimensional stratum (of the boundary) of B then the
stratification of B is not locally injective at σ, i.e. the associated map iσ is clearly not
injective.

On the other hand, since B has only one stratum of codimension 1, which we denote
by s, the only possible developments of B are made of a family of copies of B glued
together via identities of the corresponding strata s. Clearly, all these developments are
not nonpositively curved.

A striking feature of the above example is that B is not simply connected. The reader
should note that the connected double cover B′ of B has locally injective stratification,
and that it admits finite nonpositively curved developments. Such developments D of B′

can be viewed as some kind of ”non-simple” developments of B (in the sense that lifts of
the whole of B to D do not exist). However, in this paper we only deal with ”simple”
developments, i.e. developments D as defined in Section 4. In case of simply connected
billiard tables ”non-simple” developments do not exist.

Next example shows that in some cases neither convexity of the boundary nor local
injectivity of the stratification is necessary to have a nonpositively curved development.

5.2 Example. Let B be a topological annulus equipped with Euclidean metric, with
piecewise geodesic boundary, and such that
(1) first component of the boundary consists of a single vertex v0 and a single 1-dimensio-

nal stratum s0 meeting v0 twice, so that together with v0 it forms a loop;
(2) B has (non convex) angle 3π/2 at v0;
(3) second component of the boundary consists of two vertices v1, v2 and two 1-dimensio-

nal strata s1, s2 forming together a circle;
(4) B has angles 3π/8 at v1 and v2.
We leave it for the reader to verify that such annuli exist.

Now, the boundary of B is clearly not convex and the stratification is not locally
injective (both things fail at the vertex v0).
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Consider the table of groups G over B defined by putting Gs = Z2 at all 1-dimensional
strata s, Gvi = Z2⊕Z2 for i = 1, 2, with the obvious structure homomorphisms sending the
adjacent groups Gs onto distinct factors of Gvi , and finally Gv0 = Z2 with both structure
homomorphisms Gs0 → Gv0 identical. Consider also the morphism m : G → Z2 ⊕Z2 ⊕Z2

sending the three groups Gsi = Z2 onto distinct factors. Then the development D(G,m)
is easily seen to be nonpositively curved.

We now turn to discussing how one can relax the assumption that links of a billiard
table B are convex spherical polytopes. The next lemma and corollary show that links
cannot be arbitrary. Recall that a subset A in a geodesic metric space X is r-convex (for
some r > 0) if any geodesic in X of length less than r that connects some points from A
is contained in A. X is r-uniquely geodesic if for any two points at distance smaller than
r in X a geodesic connecting these points is unique.

5.3 Lemma. If a spherical billiard table B has a CAT (1) development D then B is
π-convex in D. Moreover, B is itself CAT (1).

Proof: Note first that for any points x, y ∈ B we have dB(x, y) ≤ dD(x, y), where dB , dD

are the geodesic metrics in B and D respectively. This follows from existence of the
folding map f : D → B that maps each copy of B in D identically on B. A geodesic in D
connecting x, y can be mapped by f into B, hence the inequality.

Now, we prove π-convexity by induction with respect to dim B. The case dim B = 1
is clear. Suppose dim B > 1. For any stratum σ in ∂B the link Bσ is a spherical billiard
table, and the corresponding link Dσ is its CAT (1) development. Thus, by inductive
assumption, Bσ is π-convex in Dσ. Consider points x, y ∈ B such that dD(x, y) < π. Then
dB(x, y) < π. Let γ be a geodesic in B (of length dB(x, y)) connecting x and y. By local
π-convexity of B in D, γ is a local geodesic in D (see [CD, Lemma 1.6.5]). Since local
geodesics of length less than π in CAT (1) spaces are geodesics ([BH, Proposition 1.4(2),
p. 160]), γ is a geodesic in D. Moreover, this is the only geodesic in D between x and y,
because CAT (1) spaces are π-uniquely geodesic ([BH, Theorem 5.4, p. 206]). Since γ is
contained in B, this proves B is π-convex in D.

We now prove that B is CAT (1). By Theorem 5.4 on p. 206 in [BH], a piecewise
spherical complex is CAT (1) iff it is π-uniquely geodesic. By the above argument, any
geodesic in B of length less than π is a geodesic in D. Since D is CAT (1), it is π-uniquely
geodesic, and this implies B is π-uniquely geodesic too. Hence the lemma.

5.4 Corollary. Let B be a Euclidean (or hyperbolic) billiard table. A necessary condition
for B to have a nonpositively (or negatively) curved development is that B is nonpositively
(respectively, negatively) curved.

Condition CAT (1) is not sufficient for a spherical table B to have a CAT (1) develop-
ment, as the following example shows.

5.5 Example. Let B be the a 2-dimensional unit half-sphere H with removed some small
spherical acute angled triangle T having one side contained in ∂H. By requiring that T is
small we mean for example that its perimeter is less than π. B is then easily seen to be
CAT (1).
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Any development D of B has to contain the union of two copies of B glued along the
side contained in ∂H. This union however contains a closed geodesic γ of length less than
2π, namely the one composed of four edges of the deleted triangles T in both copies of B.
It is not difficult to realize that γ is also a geodesic in the whole development D, and thus
the latter cannot be CAT (1).

Let us focus attention on the case of simply connected Euclidean (or hyperbolic)
billiard tables B. It follows from Corollary 5.4 that, in order to have nonpositively (re-
spectively, negatively) curved development, B has to be CAT (0) (respectively, CAT (−1)).
Next example shows that even in this restricted class the stratification of B may not be
locally injective, and that this may prevent B from having an appropriate development.

5.6 Example. Let B be the union of the unit 3-dimensional cube C and a small regular
tetrahedron P , glued together through an isometric embedding of a face T of P into a
face S of C, such that the image of T intersects ∂S only at a single vertex v of S. B is
easily seen to be CAT (0) and to have not locally injective stratification at v. Moreover,
the union of two copies of B along the face contained in S is not nonpositively curved,
since its link at v contains closed geodesic γ of length 2π/3. It is not hard to see that γ is
also a geodesic in the link at v of any development of B. Hence no development of B is
nonpositively curved.

It turns out that property CAT (0) together with local injectivity of stratification is
also not sufficient for a Euclidean table B to have nonpositively curved development.

5.7 Example. Let B be the unit 3-dimensional cube C with removed some small tetra-
hedron P such that two vertices of P are contained in the interior of an edge E of C
and two other vertices of P , say v and w, are contained respectively in the interiors of
the two square faces of C adjacent to E. B is easily seen to be CAT (0) and to have
locally injective stratification. However, the links of B at vertices v and w have the form
as spherical 2-dimensional table of Example 5.5. It follows that B has no nonpositively
curved development.

Above examples show that, in order to have appropriate developments of B, it may
be necessary to put some assumption on each union of two copies of B glued identically
along their (single) stratum of codimension 1. We will call such unions doubles of B. It is
also worth noting that our method of constructing developments D in this paper (at least
pseudo-manifold ones), has the following feature: for any double B′ of B development D is
also a development of B′. (This is so because we make use of Theorem A.5, and its proof
in [SNPC] uses the notion of extra-tilability, which is closely related to the above property;
we do not want to go to further details concerning that issue.) In view of Lemma 5.3, a
necessary condition for our method to give a CAT (1) development is that any double of a
spherical table B is CAT (1). It is quite possible (and we leave it as a conjecture) that:
(1) condition that any double of B is CAT (1) is necessary for a spherical table B to have

any CAT (1) development, regardless of the method of constructing it;
(2) the same condition is sufficient for a spherical CAT (1) table B to have a finite CAT (1)

development.
There is also a weaker version of the above conjecture, dealing with the free develop-

ment of B. The latter is the infinite pseudomanifold development, whose dual graph is a
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tree. Here by the dual graph we mean the graph whose vertex set is the set of copies of
B, and whose edges correspond to codimension one strata in the development.

Now, if the free development of a spherical table B is CAT(1) then, since it is also
a development of any double of B, it follows from Corollary 5.4 that any double of B is
CAT(1). Thus, requiring that the free development is CAT(1) is stronger than requiring
that any double is CAT(1). So the weaker conjecture reads: If the free development of B
is CAT(1) then B has also a finite CAT(1) development.

Appendix A. Large simplicial complexes.

In this appendix we recall definitions and some useful properties of k-large simplicial
complexes. The reader is referred to [SNPC] for more details. We also present (in Lemma
A.3) certain new criterion for k-largeness.

A cycle in a simplicial complex is a subcomplex homeomorphic to the circle S1. Length
of a cycle is the number of its edges. The following definition of k-largeness appears in
[SNPC], as a characterization, in Fact 1.2(3)(4). The case k = ∞ occurs in Section 15 of
[SNPC], just before Proposition 15.2.

A.1 Definition. Let k ≥ 4 be an integer. A simplicial complex Z is k-large if it is flag 1

and if every full 2 cycle in Z has length at least k. It is ∞-large if it is flag and contains
no full cycle.

The following properties, follow directly from the definition.

A.2 Lemma. Let Z be a k-large simplicial complex, for some k ≥ 4 or k = ∞. Then
(1) every full subcomplex of Z is k-large;
(2) links Zσ of Z, at all its simplices σ, are k-large.

We now turn to a new characterization of k-largeness. An immersed cycle in a sim-
plicial complex Z is a non-degenerate 3 simplicial map from a 1-dimensional complex S
homeomorphic to the circle S1 to Z, such that any two consecutive edges in S are mapped
to different edges. An immersed cycle in a flag simplicial complex Z is 2-geodesic if no
two consecutive edges in this cycle belong to a simplex of Z. If Z is flag, this is equivalent
to the property that any two consecutive edges in the cycle form a geodesic in Z (for the
polygonal distance in the 1-skeleton). This justifies the name of the property. Note that
any full cycle in Z is clearly 2-geodesic, but not vice versa.

A.3 Lemma. For any k ≥ 4 or k = ∞, a simplicial complex Z is k-large iff it is flag and
there is no 2-geodesic immersed cycle in Z of length less than k.

Proof: Since any full cycle is 2-geodesic, one implication follows. To prove the remaining
one, suppose that Z contains no full cycle of length less than k. We need to show that Z

1 A simplicial complex is flag if any set of its vertices pairwise connected by edges spans
a simplex.

2 A subcomplex K in a simplicial complex X is full if any set of vertices from K spanning
a simplex in X spans also a simplex in K.

3 A simplicial map is non-degenerate if it is injective on every simplex.
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contains no 2-geodesic immersed cycle of length less than k. Let γ be an immersed cycle of
length less than k in Z. It clearly provides an embedded cycle γ0 in Z, of length less than
k, whose all edges are edges of γ (if γ is embedded we take γ0 = γ and if γ self-intersects
then γ0 is a part of γ). Since γ0 has length less than k, it is not full. It means that some
two non-consecutive vertices in γ0 are connected in Z with an edge, say e. We can choose
a shorter cycle γ1 in Z containing edge e, with the remaining part consisting of several
consecutive edges of γ. Repeating this finitely many times we end up with certain cycle
γm of length 3, with two of its consecutive edges coinciding with certain two consecutive
edges of γ. But this shows γ is not 2-geodesic, which finishes the proof.

We turn to a result (Theorem A.5 below) concerning existence of certain k-large
simplicial complexes. For this we need some terminology related to simplices of groups.
The standard reference is [BH, II.12]. Notation that we use agrees with that introduced
in Section 19 of [SNPC], and is slightly different from that in [BH].

Let G be a group of automorphisms of a simplicial complex X. We say that a simplex
∆ of X is a strict fundamental domain for the action of G if the restricted quotient map
∆ → G\X is a bijection.

A pair (X, G) as above, with ∆ ⊂ X a strict fundamental domain, defines a simplex
of groups G and a morphism m : G → G, as follows. For every face σ of ∆ put Gσ to
be the subgroup of G fixing σ pointwise. The simplex of groups associated to (X, G) is
the family G = {Gσ : σ is a face of ∆}. The morphism associated to (X, G) is the family
m = {mσ : σ is a face of ∆} of inclusion homomorphisms mσ : Gσ → G.

Note that G above satisfies the following property:

(∗) if σ ⊂ τ then Gτ < Gσ.

The above motivates the following general definition. A simplex of groups over a sim-
plex ∆, equipped with a morphism to a group G, is a family G = {Gσ : σ is a face of ∆} of
subgroups of G satisfying property (*) above, and the family m = {mσ : σ is a face of ∆}
of inclusion homomorphisms mσ : Gσ → G.

For a simplex of groups G = {Gσ} over ∆ equipped with a morphism m : G → G
define the development of G with respect to m as the quotient

D(G,m) := ∆×G/ ∼,

where ∼ is the equivalence relation defined by

(x, g) = (y, h) iff x = y ∈ σ and g−1h ∈ Gσ for some face σ of ∆.

Denote by [x, g] the equivalence class of (x, g), and put [σ, g] := {[x, g] : x ∈ σ}. D(G,m)
is then a multi-simplicial complex with the faces [σ, g] (being injective images of σ × {g}
through the quotient map of ∼). It is multi-simplicial (and not just simplicial) since the
intersection of its faces may be a union of faces (and not just a single face). However, de-
velopments of simplices of groups considered in this paper will always be genuine simplicial
complexes.
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The above description of the development D(G,m) can be found in [BH, II.12], where
it is called Basic Construction. We recall few more properties of developments.

A.4 Properties. Let G = {Gσ} be a simplex of groups over ∆ equipped with a morphism
m : G → G.
(1) The formula h · [x, g] = [x, hg] defines an action of the group G on D(G,m) by auto-

morphisms.
(2) (see [BH], Proposition 12.20(1), p.385) If G and m are induced by an action of G on X,

with ∆ ⊂ X a strict fundamental domain, then D(G,m) is equivariantly isomorphic
to X.

(3) D(G,m) is finite iff the index (G : G∆) is finite.

Crucial for our arguments in this paper is the following substantial result.

A.5 Theorem ([SNPC, Theorem H]). Let ∆ be a simplex (of arbitrary dimension) and
suppose that for any codimension 1 face s of ∆ we are given a finite group As. Then for
any k ≥ 4 there exist a finite group G, and a simplex of groups G = {Gσ} equipped with
a morphism m : G → G, such that G∆ = {1}, Gs = As for any codimension 1 face s of ∆,
and the development D(G,m) is a finite k-large simplicial complex.

Note that, in view of Property A.4(3), finiteness of D(G,m) follows from finiteness of
G.

Appendix B: Face complex of a simplicial complex.

In this Appendix we present proof of the following result noticed by Frederic Haglund.

B.1 Proposition. The face complex of a simplicial complex X is k-large if and only if X
is k-large.

Proof: Denote by Φ0(X) the subcomplex in the face complex Φ(X) spanned by all vertices
[v] corresponding to vertices v in X. By definition, Φ0(X) is a full subcomplex in Φ(X).
Moreover, since X is simplicial, there is a canonical simplicial map X → Φ0(X) which is
easily seen to be a simplicial isomorphism. Thus, if Φ(X) is k-large, it follows from Lemma
A.2(1) that Φ0(X) is k-large, and then X is also k-large. This proves one implication of
the proposition.

To prove the converse implication, we first show that if X is flag then Φ(X) is also
flag. Let [τ1], . . . , [τm] be a set of vertices that are pairwise connected with edges in Φ(X).
Consider the set T of all vertices in all simplices τ1, . . . , τm. Note that, by our assumptions,
any two vertices in T are connected with an edge in X. Since X is flag, T spans a simplex
of X, and we denote it σ. The simplices τ1, . . . , τm are clearly the faces of σ and thus
they form a joinable set of faces. Consequently, there is a simplex in Φ(X) containing the
vertices [τ1], . . . , [τm], hence flagness of Φ(X).

Since 4-largeness is equivalent to flagness, it remains to prove (the converse implication
of) the proposition for k ≥ 5. We will do this using induction on k, with the already proved
case k = 4 as the first inductive step.

Fix some k ≥ 5. We need to show that any cycle

γ = ([τ0], [τ1], . . . , [τL])
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(where [τ0] = [τm]) with length satisfying 4 ≤ L < k is not full in Φ(X). We will do this
by induction with respect to the length L and the parameter D = dim τ0 + . . .+dim τL−1.

We consider first cycles γ of length L = 4. If D = 0, i.e. simplices τ0, . . . , τL−1 are
vertices of X, the statement follows easily from k-largeness of X. Suppose the statement
is true for all 0 ≤ D < m, for some natural number m. We will prove it for D = m.
We may assume that the simplex τ0 representing the first vertex in our cycle γ is of
dimension > 0, and we fix a vertex v and its complementary face τ in τ0. Note that γ′ =
([τ ], [τ1], [τ2], [τ3], [τ ]) is a cycle in Φ(X) with D = m−1 and, by inductive assumption, it is
not full in Φ(X). It means that either τ1, τ3 or τ, τ2 are joinable, so that the corresponding
two vertices span an edge in Φ(X). If the simplices τ1, τ3 are joinable, the cycle γ is clearly
not full. Otherwise the simplices τ, τ2 are joinable, and by a similar argument v, τ2 are
also joinable. But, due to flagness of X, this means that the simplices τ0, τ2 are joinable,
and γ is not full in this case too.

Now, fix L satisfying 4 < L < k and suppose that the statement (saying that cycles
are not full) holds for all cycles of length < L. Let γ = ([τ0], [τ1], . . . , [τL]) be a cycle of
length L. If D = 0, this cycle is not full by k-largeness of X. Suppose the statement is
true for all 0 ≤ D < m, for some natural number m. We will prove it for D = m. As
before, may assume that the simplex τ0 representing the first vertex in γ is of dimension
> 0, and we fix a vertex v and its complementary face τ in τ0. As before,

γ′ = ([τ ], [τ1], . . . , [τL−1], [τ ])

is a cycle in Φ(X) with D = m − 1 and, by inductive assumption, it is not full in Φ(X).
If some two non-consecutive simplices in the sequence τ1, . . . , τL−1 are joinable then the
cycle γ is easily seen not to be full. For the remaining case we need the following.

Claim. If no two non-consecutive simplices in the sequence τ1, . . . , τL−1 are joinable then
the simplex τ is joinable to each of the simplices τ2, . . . , τL−2.

Proof of Claim: τ is clearly joinable with at least one of the simplices τ2, . . . , τL−2, say
τj , by the fact that the cycle γ′ is not full. But then we get two shorter cycles

γ1 = ([τ ], [τ1], . . . , [τj ], [τ ]) and γ2 = ([τ ], [τj ], . . . , [τL−1], [τ ])

in Φ(X), and those of them which have length ≥ 4 are not full by inductive assumption.
This implies joinability of τ with at least one more of the simplices τ2, . . . , τL−2, and
iteration of this argument proves the claim.

Under assumption as in Claim, the same argument shows v is joinable to each of the
simplices τ2, . . . , τL−2. By flagness of X, this shows that the simplex τ0 is joinable to each
of the simplices τ2, . . . , τL−2, and thus γ is not full.

This finishes the proof of proposition.
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