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Abstract: We prove the Systolic Flat Torus Theorem, which completes the list of results
that are simultaneously true for systolic geometry and CAT(0) geometry.

We develop the theory of minimal surfaces in systolic complexes, which is a powerful
tool in studying systolic complexes. We prove that flat minimal surfaces in a systolic
complex are almost isometrically embedded and introduce a local condition for flat surfaces
which implies minimality. We also prove that minimal surfaces are stable under small
deformations of their boundaries.
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1. Introduction

Systolic complexes were introduced by Tadeusz Januszkiewicz and Jacek Świa‘tkowski
in [JS1] and independently by Frédéric Haglund in [Ha]. They are connected simply con-
nected simplicial complexes satisfying certain local combinatorial condition (see Definition

∗ Partially supported by Polish Ministry of Science and Higher Education (Ministerstwo Nauki i Szkol-
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2.1 for details), which is a simplicial analogue of nonpositive curvature. Systolic complexes
have many properties similar to properties of CAT(0)-spaces; however, systolicity neither
implies, nor is implied by nonpositive curvature of the complex equipped with the piecewise
euclidean metric for which simplices are regular euclidean simplices.

In the study of CAT(0)-spaces it is often important to study their flat subspaces,
i.e. isometrically embedded euclidean spaces En, n ≥ 2. In the present paper we study
flat subspaces of systolic complexes. A 2-dimensional flat in a systolic complex X is an
equilaterally triangulated euclidean plane (denoted E2

4) whose 1-skeleton is isometrically
embedded into X(1). One does not need to consider higher dimensional flats, since (as it
was proved in [JS2]) systolic complexes do not contain flats of dimension larger than 2 (i.e.
there are no systolic triangulations of En for n ≥ 3 and there are no properly discontinuous
actions of Zn on a systolic complex for n ≥ 3).

One of the main results of this paper is the Systolic Flat Torus Theorem, which
completes the list of results that are simulaneously true for systolic geometry and CAT(0)
geometry. In particular we present an alternative proof of the fact that a free abelian
group acting properly discontinuously on a systolic complex has rank at most 2.

Systolic Flat Torus Theorem (see Theorem 6.1 in the text) Let G be a noncyclic free
abelian group acting properly discontinuously by simplicial automorphisms on a systolic
complex X. Then:

(1) G is isomorphic to Z2.

(2) There is a G-invariant flat in X. Any two such flats are at Hausdorff distance 1.

(3) A vertex v ∈ X is contained in some G-invariant flat if and only if it satisfies the
minimal displacement condition, i.e.

d(v, g(v)) = min
x∈X(0)

d(x, g(x)), for any g ∈ G

Part (2) of the theorem can be made more precise by the following theorem, character-
izing flats at finite Hausdorff distance. It states that not only flats (images of embeddings
of E2

4 into X) are at Hausdorff distance 1, but also the embeddings themselves are at
distance 1. Thus G-invariant flat given by the Systolic Flat Torus Theorem is in some
sense unique.

Theorem A (see Theorem 5.4 in the text) Let F and F ′ be flats in a systolic complex X
at finite Hausdorff distance. Then there is a simplicial isometry f : F → F ′ such that

dX(v, f(v)) ≤ 1, for any vertex v ∈ F

In particular F and F ′ are at Hausdorff distance at most 1.

The main tool used in the proof of Systolic Flat Torus Theorem is the theory of
minimal surfaces, developed in the first part of the paper (Sections 2–4). Given a cycle γ
in X, a surface spanning γ is a simplicial map S : ∆ → X such that ∆ is a triangulation
of a 2-disc and S maps ∂∆ isomorphically onto γ. A surface S is minimal if ∆ has the

2



minimal number of triangles. Since we are mainly interested in studying flats in X, the
surfaces of our special interest are flat surfaces, i.e. those for which the domain of S is a
simplicial disc ∆ ⊂ E2

4 such that the 1-skeleton ∆(1) is isometrically embedded into the
1-skeleton of E2

4.
We answer the following questions that naturally arise, when considering flat minimal

surfaces:

(1) Is it possible to characterize flat minimal surfaces in local terms?

(2) Is a flat minimal surface an isometric embedding?

(3) Is a flat minimal surface spanning given cycle γ unique?

(4) If cycles γ1 and γ2 are close to each other, are minimal surfaces spanning them close?

The following theorems summarize more precise, but more technical results from the
main text, pertaining to the discussion above. Theorem B presents a local characteri-
zation of flat minimal surfaces (condition (a) in the theorem) and a positive answer to a
slightly weaker version of question (2) (the interior of a flat minimal surface is isometrically
embedded).

Theorem B (see Theorem 4.12 in the text) Let ∆ ⊂ E2
4 be a simplicial disc such that

∆(1) is isometrically embedded into the 1-skeleton of E2
4 and ∂∆ has no diagonals (i.e.

nonconsecutive vertices of ∂∆ are not connected by an edge in ∆). Then for an arbitrary
simplicial map S : ∆ → X to a systolic complex X the following are equivalent:

(a) The restriction of S to any simplicial disc D ⊂ ∆ such that diam D ≤ 3 is an
isometric embedding,

(b) The restriction of S to the subcomplex spanned by all internal vertices of ∆ is an
isometric embedding,

(c) S is a minimal surface.

The answer to question (3) is negative – there can be many different minimal surfaces
spanning the same cycle in a systolic complex. However, we proved that if one of these
surfaces is flat, then all of them are pairwise at Hausdorff distance 1. Moreover, they are
equivalent in the following sense.

Theorem C (see Theorem 4.12 in the text) Let S : ∆ → X be a flat minimal surface
in a systolic complex X and let ∂∆ have no diagonals. Then for any minimal surface
S′ : ∆′ → X spanning the same cycle as S we have ∆′ = ∆ and dX(S(v), S′(v)) ≤ 1 for
any vertex v ∈ ∆ = ∆′.

Theorem D states the stability of flat minimal surfaces under small deformations of
their boundaries. This is the simplified version of the theorem from the text, where we do
not assume that S and S′ are flat and do not use the assumption that γ and γ′ have equal
length.
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Theorem D (see Theorem 4.16 in the text) Let γ and γ′ be two cycles of equal length in
a systolic complex X such that they have no diagonals. Denote by ϕ : γ → γ′ a simplicial
isomorphism. If S and S′ are flat minimal surfaces spanning γ and γ′, respectively, then

hdistX(Im S1, ImS2) ≤ max
v∈γ(0)

dX(v, ϕ(v)) + 1

Techniques developed in the present paper have more applications in the theory of
systolic spaces.

As a consequence of Theorem B we obtain a result proved by Piotr Przytycki in [P]: a
cocompact systolic complex is Gromov-hyperbolic if and only if it does not contain a flat
(Corollary 4.14).

For systolic spaces one has a natural modification of the Isolated Flats Property
(studied by G. Christopher Hruska in [Hr1] and [Hr2] for CAT(0)-spaces). In [E1] we
examine systolic spaces with the Isolated Flats Property admitting a geometric action of
a group G. As a consequence of the Systolic Flat Torus Theorem we obtain a bijective
correspondence between equivalence classes of flats in X (two flats are equivalent if they are
at finite Hausdorff distance) and maximal virtually abelian rank 2 subgroups in G. We use
Theorems B and D to prove that such G is relatively hyperbolic with respect to its maximal
virtually abelian rank 2 subgroups and to characterize cocompact systolic complexes with
the Isolated Flats Property as complexes not containing isometrically embedded triplanes
(this is a systolic analogue of a 2-dimensional CAT(0) result of Daniel Wise, contained in
[Hr1]).

In [E2] we apply Theorem B to obtain a classification of individual simplicial isometries
of systolic complexes. We show that such an isometry is either elliptic or hyperbolic.

In [E3] we use Theorem B to prove the δ-thin tetrahedra property for systolic spaces,
a condition which is a higher dimensional analogue of the δ-thin triangles property. It
states that given any 4 vertices in a systolic complex X, a tetrahedron obtained by joining
the vertices pairwise by geodesics in X(1) and then spanning minimal surfaces on 4 arising
geodesic triangles satisfies the following property: any of its 2-dimensional faces (i.e. any
of the minimal surfaces) is in δ-neighbourhood of the union of the remaining three faces.

Acknowledgements
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many helpful discussions and advice.

2. Systolic complexes and groups

In this section we recall the definition and main properties of systolic complexes and
systolic groups, proved in [JS1] and [JS2]. Theorem 2.4 is a variation of Theorem 8.2 in
[JS2] and is crucial for the present paper. Remaining material here is just for reader’s
convenience.

Let X be a simplicial complex and σ a simplex of X. The link of X at σ, denoted
Xσ, is a subcomplex of X consisting of all simplices that are disjoint from σ and together
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with σ span a simplex of X. The (closed) star of σ is the union of all (closed) simplices
containing σ. A simplex σ is the join of its faces τ1, τ2 ⊂ σ (what we denote σ = τ1 ∗ τ2)
if τ1 and τ2 are disjoint and their union spans σ. A complex X is the join of its disjoint
subcomplexes K, L ⊂ X (denoted X = K ∗ L) if X consists of all simplices of the form
σ ∗ τ , where σ and τ are simplices of K and L, respectively.

A simplicial complex X is flag if every finite set of its vertices pairwise connected by
edges spans a simplex of X. A subcomplex Y ⊂ X is full if any simplex σ ⊂ X with all
vertices in Y is contained in Y .

A cycle in X is a subcomplex γ isomorphic to a triangulation of a circle. The length
of γ (denoted |γ|) is the number of its edges. A diagonal of a cycle is an edge joining its
two nonconsecutive vertices.

Whenever we refer to a metric on a simplicial complex, we actually mean the 1-skeleton
of the complex equipped with the combinatorial metric (i.e. the geodesic metric in which
all edges have length 1). Thus for a simplicial complex X the symbol ‘dX ’ denotes the
combinatorial metric on X(1). Moreover, referring to a geodesic in a simplicial complex
X, we mean a geodesic in X(1) having both endpoints in X(0).

Definition 2.1. (see [JS2]) A simplicial complex X is called:

• 6-large if it is flag and every cycle γ in X of length 4 ≤ |γ| < 6 has a diagonal;

• locally 6-large if the link of X at every (nonempty) simplex is 6-large;

• systolic if it is locally 6-large, connected and simply connected.

A group acting simplicially, properly discontinuously and cocompactly on a systolic com-
plex is called a systolic group.

As the following fact shows, an equivalent definition of systolicity can be obtained by
replacing words ‘locally 6-large’ with ‘6-large’.

Fact 2.2. ([JS1], Proposition 1.4) Every systolic complex is 6-large. In particular, a cycle
of length smaller than 6 in a systolic complex bounds a triangulated disc with no internal
vertices.

The original definition of Januszkiewicz and Świa‘tkowski introduces notions of k-
largeness and k-systolicity for k ≥ 6, obtained by a natural modification of Definition 2.1
(then systolic complex means 6-systolic complex). However, k-systolic complexes for k ≥ 7
are Gromov-hyperbolic ([JS1], Theorem 2.1), so they contain neither flats, nor even wide
flat surfaces (see Definition 4.1) and do not admit properly discontinuous actions of Z2.
Therefore from our point of view they are not interesting.

Theorem 2.3. Let X be a finite dimensional systolic complex. Then:

• ([JS1], Theorem 4.1) X is contractible.

• ([JS2], Corollary 1.3) Every full subcomplex of X is aspherical.

Januszkiewicz and Świa‘tkowski proved that every connected locally 6-large complex
of groups is developable ([JS1], Theorem 6.1). Using this result many constructions of
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compact complexes with systolic universal coverings were presented ([JS1], Corollaries
19.2 and 19.3).

The next theorem follows from the proof of Theorem 8.2 in [JS2]. However, as it is
an important result for the present paper, we provide its proof below.

Theorem 2.4. Let X be a systolic complex and S a triangulation of a 2-sphere. Then
any simplicial map f : S → X can be extended to a simplicial map F : B → X, where B
is a triangulation of a 3-ball such that ∂B = S and B has no internal vertices.

Proof: We proceed by induction on the number of triangles in S. The smallest possible
number is 4; then S is the 2-skeleton of a tetrahedron and the statement follows from
flagness of X. The case of a larger number of triangles in S we divide into two subcases:

Case 1: S is not flag.

As the case of the 2-skeleton of a tetrahedron has already been discussed, there exists
a cycle γ of length 3 in S not bounding a triangle. Thus γ disconnects S into discs D1

and D2 (∂D1 = ∂D2 = γ). For i = 1, 2 we glue a single triangle to Di along γ, obtaining
a triangulation Si of a sphere with a smaller number of triangles than in S (we assume
S1 ∩ S2 is the single triangle) and define fi : Si → X to be the simplicial map whose
restriction to 1-skeleton coincide with the restriction of f (fi is well-defined, since X is
flag). By the inductive assumption, fi can be extended to Fi : Bi → X, where Bi is
such a triangulation of a ball that has no internal vertices and ∂Bi = Si. Finally, we put
B = B1 ∪B2 and F = F1 ∪ F2.

Case 2: S is flag.

Since the Euler characteristic of a sphere is positive, by the Gauss-Bonnet Theorem
there is a vertex v ∈ S adjacent to less than 6 triangles. The link at v is a cycle γ of length
4 or 5 (length 3 is impossible by flagness of S). Thus S = D1 ∪D2, where D1 = v ∗ γ is
the closed star of v and D2 is obtained from S by cutting out the open star of v. Notice
that by flagness of S the cycle γ = ∂D2 = ∂D1 has no diagonals.

By Fact 2.2, the map f |γ can be extended simplicially over some triangulated disc C
(γ = ∂C) with no internal vertices. Define B1 = v∗C and let F1 : B1 → X be the simplicial
map whose restriction to 0-skeleton coincides with the restriction of f (it is well-defined
by flagness of X). Then S2 = D2 ∪C is a triangulation of a sphere (as γ = ∂D2 = ∂C has
no diagonals in D2) with a smaller number of triangles than in S. Let f2 : S2 → X be the
simplicial map whose restriction to 0-skeleton coincides with the restriction of f . Applying
the inductive assumption we extend it to F2 : B2 → X, where B2 is a triangulation of
a ball with no internal vertices satisfying ∂B2 = S2. Finally, we put B = B1 ∪ B2 and
F = F1 ∪ F2.

3. Systolic triangulations of a disc

The simplest example of a systolic complex is an equilaterally triangulated euclidean
plane – it will be called the flat systolic plane and denoted E2

4. As we have written before,
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we equip it with the combinatorial metric on the 1-skeleton and do not use any metric on
the whole complex. We define a systolic disc to be a systolic triangulation of a 2-disc and
a flat disc – a systolic disc ∆ such that ∆(1) can be isometrically embedded into E2

4. For
any vertex v ∈ ∆ the defect at v is defined by the following formula:

def∆(v) =
{

6−#{triangles in ∆ containing v}, if v /∈ ∂∆
3−#{triangles in ∆ containing v}, if v ∈ ∂∆

It is clear that internal vertices of a systolic disc have nonpositive defects. Boundary
vertices will be called, for brevity, (non)positive, zero, or (non)negative if their defects are
such. Throughout the paper we use the term ‘the sum of defects along a polygonal line’
to mean the sum of defects at all of its vertices except at the endpoints.

Now we state few facts on systolic discs, frequently used in this paper.

Remark 3.1. If ∆ is a systolic disc and g is a geodesic in ∆ contained in ∂∆, then the
sum of defects along g is at most 1.

Proof: The geodesic g does not pass through any boundary vertex of defect 2. Moreover,
if g passes through vertices u, v ∈ g ⊂ ∂∆ of defects +1, at least one of the vertices on
g between u and v has a negative defect (by geodesity of g). Thus positive vertices on g
have defects +1 and are separated by negative vertices, so the sum of defects is at most 1.

Lemma 3.2. (Gauss-Bonnet Lemma) If ∆ is any simplicial disc, then:

∑

v∈∆(0)

def(v) = 6.

In particular, if ∆ is a systolic disc, then the sum of defects at boundary vertices is at
least 6, with the equality if and only if ∆ has no internal vertices of negative defects.

Lemma 3.3. (Pick’s Formula) Let ∆ be any simplicial disc. Denote its area (i.e. the
number of triangles) by S, its perimeter by l and the numbers of its internal and boundary
vertices by Vi and Vb, respectively. Then:

S = 2Vi + Vb − 2 = l + 2(Vi − 1).

In particular, the area of a simplicial disc depends only on the numbers of its internal and
boundary vertices.

Proof: Denoting by Ei the number of internal edges of ∆, we obtain 3S = 2Ei + l. The
Euler characteristic of ∆ is equal to 1 = S − (Ei + l) + (Vi + l), hence Ei = S + Vi − 1.
Substituting the last equation into the first one we obtain the lemma.

It is known ([JS1]) that systolic complexes satisfy quadratic isoperimetric inequality.
In the subsequent lemma we provide explicit constants, presenting the optimal estimate
on the area of a systolic disc.
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Lemma 3.4. Let ∆ be a systolic disc of perimeter l and of area S. Then:

(1) S ≤ 1
6 l2;

(2) dist(v, ∂∆) ≤ 1
6 l, for every vertex v ∈ ∆.

The inequalities are optimal if l 6≡ ±1 (mod 6). In the remaining cases the optimal
isoperimetric inequality is S ≤ 1

6 l2−1 (as by Pick’s Formula S ≡ l (mod 2)). If l = 6k + r,
where k, r are natural numbers and r < 6 the estimate is realized by an equilaterally
triangulated regular hexagon of side length k +1 with cut off triangles adjacent to its 6− r
consecutive sides.

Proof: Denote by λ∆(d) the number of vertices v ∈ ∆ satisfying dist(v, ∂∆) = d. We
prove by induction on l the following inequality:

(3.1) λ∆(d) ≤




l − 6d, for 0 < d < 1
6 l

1, for d = 1
6 l

0, for d > 1
6 l

for any systolic disc ∆ of perimeter l

This is trivial when l < 6, as by Fact 2.2 in such a case ∆ has no internal vertices.
Case l ≥ 6 will be divided into three subcases.

Case 1: ∆ has a disconnecting edge e.

Then e disconnects ∆ into two systolic discs ∆1 and ∆2 of perimeters l1 and l2, where
l1 + l2 = l + 2 and 3 ≤ l1 ≤ l2 < l. If 0 < d ≤ 1

6 l1, then d < 1
6 l and by the inductive

assumption:

λ∆(d) = λ∆1(d) + λ∆2(d) ≤ (l1 − 6d + 1) + (l2 − 6d + 1) = l + 4− 12d ≤ l − 6d.

If d > 1
6 l1, then by the inductive assumption λ∆(d) = λ∆2(d) and (3.1) follows immediately.

Case 2: The closed star of some internal vertex v ∈ ∆ disconnects ∆ and there is no
disconnecting edges in ∆.

Then there exists a geodesic line of length 2 in ∆ with middle vertex v disconnecting ∆
into systolic discs ∆1 and ∆2 so that each of them contain an internal vertex. Therefore, by
Fact 2.2 their perimeters are not smaller than 6. If def∆i(v) < 0, then we glue 2 triangles
at v obtaining a systolic disc ∆′

i (as in the figure), otherwise we put ∆′
i := ∆i. Thus for

any internal vertex w ∈ ∆′
i distinct from v we have dist∆(w, ∂∆) = dist∆′

i
(w, ∂∆′

i).

Figure 3.1.
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Denoting by l′1 and l′2 the perimeters of ∆′
1 and ∆′

2 we have l′1+l′2 = l+4 and 6 ≤ l′1 ≤ l′2 < l,
hence l′1, l

′
2 < l. If 1 < d ≤ 1

6 l′1, then d < 1
6 l and by the inductive assumption:

λ∆(d) = λ∆′1(d) + λ∆′2(d) ≤ (l′1 − 6d + 1) + (l′2 − 6d + 1) = l + 6− 12d ≤ l − 6d.

Notice that by the Gauss-Bonnet Lemma a systolic disc of perimeter 6 either has a diagonal
or is the join of a vertex and a cycle of length 6, so the case l′1 = l′2 = 6 is impossible. Thus
by the inductive assumption:

λ∆(1) ≤ λ∆′1(1) + λ∆′2(1) + 1 ≤ (l′1 − 6 + 1) + (l′2 − 6) + 1 = l − 6.

In the case d > 1
6 l′1 by the inductive assumption λ∆(d) = λ∆′2(d) and (3.1) follows imme-

diately.

Case 3: ∆ can be disconnected neither by an edge, nor by a closed star of an internal
vertex.

Then the subcomplex ∆′ ⊂ ∆ spanned by all internal vertices of ∆ is a deformation
retract of ∆ and has no disconnecting vertices. Therefore ∆′ is either a systolic disc or a
single vertex v or a single edge vw. Since ∆ has no disconnecting edges, in the last two
cases ∆ is the closed star of v (and S = l ≥ 6) or the union of closed stars of v and w (and
S = l + 2 ≥ 10), whence (3.1) immediately follows.

Suppose ∆′ is a systolic disc of perimeter l′. As for every vertex v ∈ ∂∆′ ⊂ ∆ the
intersection ∆v ∩ ∂∆ = αv is an arc in ∂∆, we obtain the following inequality:

l + l′ =
∑

v∈∂∆′
(|αv|+ 1) =

∑

v∈∂∆

(2− def(v)) ≤ 2l − 6,

since both sums are equal to the number of edges in ∆ with exactly one endpoint on ∂∆
(the inequality is by the Gauss-Bonnet Lemma). Thus l′ ≤ l−6 and applying the inductive
assumption to λ∆′(d− 1) = λ∆(d) we complete the proof of (3.1). Part (2) of the lemma
is an immediate corollary.

To prove part (1) we estimate the number Vi of internal vertices of ∆:

Vi ≤
∞∑

d=1

λ∆(d) ≤ δ +
[l/6]∑

d=1

(l − 6d) = δ +
[ l

6

](
l − 3

[ l

6

]
− 3

)
≤ 1

12
l2 − 1

2
l + 1,

where δ = 1 if 6 | l and δ = 0 otherwise. Now we apply Pick’s Formula to obtain:

S = 2(Vi − 1) + l ≤ 2
(( 1

12
l2 − 1

2
l + 1

)
− 1

)
+ l ≤ 1

6
l2.

Recall that a simplicial disc ∆ is flat if ∆(1) can be isometrically embedded into E2
4.

Below we present an intrinsic characterization of flatness.
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Lemma 3.5. A simplicial disc ∆ is flat if and only if it satisfies the following three
conditions:

(i) every internal vertex of ∆ has defect 0,

(ii) ∆ has no boundary vertices of defect less than −1,

(iii) on ∂∆ any two negative vertices are separated by a positive one.

Proof: We prove the ‘if’ part (the ‘only if’ part is trivial). If ∆ has a boundary vertex of
defect −1, then ∆(1) can be isometrically embedded into a simplicial disc satisfying (i)–(iii)
having the same perimeter as ∆ and larger area (we glue 2 triangles at the negative vertex).
By the isoperimetric inequality (Lemma 3.4) the procedure terminates. Therefore, without
loss of generality, we can assume that ∆ has no negative vertices.

By induction on the number of positive vertices on ∂∆ we claim that ∆(1) can be
isometrically embedded into the 1-skeleton of a simplicial disc ∆′ such that ∆′ still satisfies
(i)–(iii), has no negative vertices, and furthermore any path in ∂∆′ joining two distinct
vertices of defect 1 passes through a vertex of defect 2. Indeed for any path [u, v], u, v ∈ ∂∆
such that u and v have defects 1 and [u, v] does not pass through any positive vertex we glue
an equilaterally triangulated equilateral triangle along [u, v] and ∆(1) can be isometrically
embedded into the 1-skeleton of the resulting simplicial disc ∆′, which still satisfies (i)–(iii),
has no negative vertices and has fewer positive vertices on its boundary.

Applying the Gauss-Bonnet Lemma we see that ∆′ has either 3 nonzero vertices (each
of defect 2), or has 4 nonzero vertices (of defects 2, 1, 2, 1, in this order). It follows that
∆ is an equilateral triangulation of an equilateral triangle or of a parallelogram. This
is proved by induction on the perimeter – we cut out triangles touching one side of the
triangle or the parallelogram and apply the inductive assumption. Therefore ∆(1) can be
isometrically embedded into E2

4.

4. Flat surfaces in systolic complexes

Let X be a systolic complex. Any simplicial map S : ∆S → X, where ∆S is a
triangulation of a 2-disc will be called a surface. We often use a symbol ∆S to denote the
domain of a surface S. Given a cycle γ in X, we say that a surface S is spanning γ if
it maps ∂∆S isomorphically onto γ. By area of a simplicial disc we mean the number of
triangles in the triangulation.

Definition 4.1. A surface S : ∆S → X in a systolic complex X is:

• minimal if ∆S has the minimal area among surfaces extending S|∂∆S
;

• systolic if ∆S is a systolic disc;

• flat if ∆S is a flat disc, i.e. ∆(1)
S can be isometrically embedded into E2

4;

• wide if ∂∆S is a full subcomplex of ∆S .

This section is devoted to the study of flat minimal surfaces. By Lemma 1.7 in [JS2],
a minimal surface S spanning a cycle γ is nondegenerate, i.e. is injective on any simplex.
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Thus if the complex ∆S has the smallest area, then also the map S : ∆S → X has the
smallest area (area of a map S is the number of triangles of ∆S on which S is injective).
The existence of minimal surfaces is given by the following lemma:

Lemma 4.2. Let X be a systolic complex and S1 a triangulated circle. Then any simplicial
map f : S1 → X can be extended to a simplicial map F : ∆ → X, where ∆ is a systolic
disc such that ∂∆ = S1. Moreover, any minimal surface extending f is systolic.

Proof: Since X is simply connected, f can be extended to a map f ′ : D2 → X, where D2

is a 2-disc. Hence, using the relative Simplicial Approximation Theorem ([Sp], p.126), we
obtain a simplicial disc ∆ such that ∂∆ = S1 and a simplicial map F : ∆ → X extending
f . We choose ∆ and F so that the area of ∆ is minimal.

If ∆ was not systolic, then it would have an internal vertex v adjacent to less than 6
triangles. Then we could cut out the open star of v and glue in a triangulated disc with
no internal vertices (extending the triangulation of ∆v) so that F could be extended over
the new triangulation (Fact 2.2). This would result in a simplicial disc ∆′ with a smaller
area than ∆ and a simplicial map F ′ : ∆′ → X extending f , contradicting minimality of
the area of ∆.

One of the main results in this section is the characterization of wide flat minimal
surfaces in local terms (Theorem 4.12). To state it we need the following local conditions:

Definition 4.3. A surface S : ∆S → X in a systolic complex X is:

• a locally isometric immersion if for any internal vertex v ∈ ∆S , S restricted to the
1-skeleton of N(v) is an isometric embedding;

• a strong locally isometric immersion if for any internal vertex v ∈ ∆S and for any
edge e ⊂ ∆S with endpoints at internal vertices of ∆S , the restrictions of S to the
1-skeleta of N(v) and N(e) are isometric embeddings.

Here and subsequently N(K) denotes the subcomplex equal to the union of all (closed)
simplices that intersect K.

4.1. Equivalent surfaces

It is natural to study flat surfaces up to some equivalence relation, defined below. We
show that if there exists a wide and flat minimal surface spanning a cycle γ, then it is
unique up to this equivalence (Theorem 4.12).

Definition 4.4. We call surfaces S and S′ v-equivalent and write S ∼=v S′ if ∆S = ∆S′

and S(x) = S′(x) for all vertices x 6= v, where v ∈ ∆S is a fixed internal vertex.

Surfaces S and S′ are equivalent if there are a sequence of surfaces S = S0, S1, . . . , Sn = S′

and a sequence of internal vertices v1, . . . , vn ∈ ∆S such that ∆S = ∆S0 = . . . = ∆Sn and
Si−1

∼=vi Si, for i = 1, . . . , n.
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Informally, two surfaces are equivalent if one of them can be obtained from the other
by a sequence of small modifications. Surprisingly, such surfaces are always Hausdorff
1-close (Lemma 4.6). It is also important that this equivalence preserves the condition of
being strong locally isometric immersion (Lemma 4.5).

Lemma 4.5. If a flat surface S in a systolic complex X is a strong locally isometric
immersion, then any surface equivalent to S also has this property.

Lemma 4.6. If flat surfaces S and S′ in a systolic complex X are equivalent and are
locally isometric immersions, then:

dX(S(v), S′(v)) ≤ 1, for any internal vertex v ∈ ∆S = ∆S′ .

In particular, the Hausdorff distance between Im S and ImS′ is at most 1.

Before proving the Lemmas, we need certain characterization of locally isometric im-
mersions in terms of local minimality.

Proposition 4.7. Let S be a flat surface in a systolic complex X. Then:

(1) S is a locally isometric immersion if and only if for every internal vertex v ∈ ∆S the
surface S|N(v) is minimal;

(2) S is a strong locally isometric immersion if and only if for every internal vertex
v ∈ ∆S and for every edge e ⊂ ∆S with endpoints at internal vertices surfaces
S|N(v) and S|N(e) are minimal.

Proof of (1):

Let v ∈ ∆S be an internal vertex. Then H = N(v) is a hexagon triangulated with 6
triangles and by Pick’s Formula S|H is not minimal if and only if S|∂H can be extended
to a surface S′ such that ∆S′ has no internal vertices. In such an extension the cycle
∂H = ∂∆S′ has a diagonal, what implies that S|H(1) is not an isometric embedding.

If S|H is a minimal surface, then S|∂H cannot be simplicially extended over ∂H ∪ α
for any diagonal α, as otherwise it could be extended over some simplicial disc with no
internal vertices (Fact 2.2), contradicting the minimality of S|H . Thus S|∂H is injective (if
S(p) = S(q) for some vertices p 6= q ∈ ∂H we define α to be a diagonal joining p with q if
they are nonconsecutive vertices of ∂H or a diagonal joining p with the other neighbour of
q otherwise) and the cycle S(∂H) has no diagonals. Since diam(H) = 2, this proves that
S|H(1) is an isometric embedding.

Proof of (2):

Let uv be an edge of ∆S with both endpoints at internal vertices of ∆S . Then
P = N(uv) is an octagon triangulated as in Figure 4.1. By Pick’s Formula, S restricted
to P is not minimal if and only if S|∂P can be extended over some simplicial disc ∆′

bounded by ∂P having at most one internal vertex. Then ∂P either has a diagonal or

12



is contained in the link of the only internal vertex of ∆′. In both cases S|P (1) is not an
isometric embedding.

If S|P is a minimal surface, then S|∂P cannot be extended over ∂P ∪ α for any
diagonal α of ∂P , as otherwise it could be extended over some simplicial disc with at most
one internal vertex (by Lemma 3.4 and Pick’s Formula cycles of length 6 and 7 have fillings
with at most 1 internal vertex and cycles of length smaller than 6 have fillings with no
internal vertices), contradicting the minimality of S|P . Hence, similarly as in the proof of
(1), we see that S|∂P is injective and the cycle S(∂P ) has no diagonals.

As by (1) the restrictions of S to the 1-skeleta of N(u) and N(v) are isometric embed-
dings, S|P is an injection onto a full subcomplex of X. Suppose S|P (1) it is not an isometric
embedding. Thus there are vertices t, w ∈ P such that dP (t, w) = 3 and dX(S(t), S(w)) = 2
(so there exists a vertex x ∈ X connected by edges with S(t) and S(w)). There are 3 sub-
cases:

Figure 4.1.

The pentagon S(t)S(u)S(v)S(w)x has 2 diagonals (Fact 2.2) and they are xS(u) and
xS(v) (as restrictions of S to 1-skeletons of N(v) and N(w) are isometric embeddings), so
the images of t, u, v, w are in the link Xx. In case (c) we have also S(a) ∈ Xx (as the
square S(u)S(a)S(w)x must have the diagonal xS(a)). We see that in any case the image
of P is contained in Xx, contradicting minimality of S|P . It follows from the following
remark, an argument which will be used many times in the paper.

Remark 4.8. Let H be a minimal surface in a systolic complex X such that ∆H = p∗∂∆H

(where p ∈ ∆H is the only internal vertex) and |∆H | = 6. If two opposite vertices of ∂∆H

are mapped by H into some link Xy, then Im H ⊂ Xy.

In any case depicted in Figure 4.1 we apply the remark to S|N(u). It follows that S|N(v)

also satisfies the assumptions of the remark and we apply the remark to S|N(v), obtaining
S(P ) ⊂ Xx. This contradicts minimality of S|P .

Proof of Remark 4.8: Denote successive boundary vertices of ∆H by a1, . . . , a6. Suppose
H(a1),H(a4) ∈ Xy. Since H is minimal, H|

∆
(1)
H

is an isometric embedding. By Fact 2.2 the
pentagon H(a1)H(a2)H(a3)H(a4)y has two diagonals: yH(a2) and yH(a3). Similarly we
obtain edges yH(a5) and yH(a6). The square H(a1)H(p)H(a4)y has the diagonal yH(p).

We now give proofs of the Lemmas stated at the beginning of this subsection.

Proof of Lemma 4.5:

13



Since any surface equivalent to S is a flat surface, it suffices to prove the statement
for w-equivalent surfaces (for any internal vertex w ∈ ∆S). Thus assume S′ ∼=w S and
denote ∆ := ∆S = ∆S′ .

By Proposition 4.7 we need to prove minimality of S′|N(u), for any internal vertex u ∈
∆ and S′|N(uv), for any edge uv with endpoints at internal vertices u, v ∈ ∆. Minimality
of S′|N(u) follows directly from minimality of S|N(u), unless d∆(u,w) = 1, but then it
follows from minimality of S|N(uw). Thus, by Proposition 4.7(1), S′ is a locally isometric
immersion.

What is left to prove is minimality of S′|N(uv). The only non-trivial case is when
w ∈ ∂N(uv). Then we can assume, not losing generality, that w is connected by an edge
with v and consider three subcases: the ones depicted in Figure 4.1 (a) and (b) and the
third one with w connected to both v and u. Inspecting the three subcases, case by case,
we see (using the fact that S′ and S restricted to the 1-skeleta of N(vw) and N(uv),
respectively, are isometric embeddings) that the map S′|N(uv) is injective and the cycle
γ = S′(∂N(uv)) has no diagonals. If S′|N(uv) was not minimal, then γ would bound a
simplicial disc with at most 1 internal vertex (by Pick’s Formula). As we have just proved
that γ has no diagonals, the disc would be the join of some vertex x ∈ X and γ. However,
this would contradict the fact that S restricted to 1-skeleton of N(uv) is an isometric
embedding.

Proof of Lemma 4.6:

Denote ∆ := ∆S = ∆S′ . Let S = S0, S1, . . . , Sn = S′ be a sequence of surfaces such
that Si−1

∼=vi Si, for some internal vertices v1, . . . , vn ∈ ∆. The proof will be divided
into two steps. First we prove that for internal vertices v, w ∈ ∆ relations ∼=v and ∼=w

‘commute’ in the following sense:

Step 1: If a flat surface S is a locally isometric immersion and S ∼=v S′ ∼=w S′′, then there
exists a surface S̄′ such that S ∼=w S̄′ ∼=v S′′.

Define a map S̄′0 : ∆(0) → X by:

S̄′0(x) =
{

S(x), if x 6= w
S′′(w), if x = w

It extends to a simplicial map S̄′ : ∆ → X if dX(S̄′0(x), S̄′0(w)) ≤ 1 for any vertex x ∈ ∆w.
As S′′ and S̄′0 coincide at all vertices but v it suffices to check this condition when x = v.
Then either S(v) = S′′(w) or (denoting ∂N(v) ∩ ∂N(w) = {a, b}) we obtain the square
S(a)S(v)S(b)S′′(w) in X, which by Fact 2.2 has the diagonal S(v)S′′(w) (since S is a
locally isometric immersion). In both cases dX(S̄′0(v), S̄′0(w)) ≤ 1.

By Lemma 4.5 the surfaces S0, . . . , Sn are strong locally isometric immersions. Thus
by Step 1 and transitivity of ∼=vi , we may assume that vertices v1, . . . , vn are pairwise
different. To complete the proof we need the following:

Step 2: If flat surfaces S and S′ are locally isometric immersions and are v-equivalent,
where v ∈ ∆ is an internal vertex, then dX(S′(v), S(v)) ≤ 1.
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Denoting by a and b two opposite vertices of ∂N(v), we see that S(a) and S(b) are
not connected by an edge in X. Thus either S(v) = S′(v) or the square S(a)S(v)S(b)S′(v)
has a diagonal (Fact 2.2), so S(v) and S′(v) are at distance at most 1.

4.2. Fundamental theorem on flat surfaces

In Theorem 4.12 we answer questions (1)–(3) stated in the introduction. The answer
to question (2) (if a minimal surface is an isometric embedding) is negative, but we prove
a slightly weaker statement: every minimal surface is an almost isometric embedding.

Definition 4.9. Let S be a surface in a systolic complex X. We say that S is an almost
isometric embedding if

d∆S
(u, v) = dX(S(u), S(v))

for vertices u, v ∈ ∆S such that either one of them is internal or they can be connected
by a neat geodesic (where a neat geodesic in ∆S is a geodesic intersecting ∂∆S at most at
the endpoints).

Theorem 4.10. Let S be a wide flat surface in a systolic complex X. If S is a strong
locally isometric immersion, then it is an almost isometric embedding.

Proof: Put ∆ := ∆S . Recall that a neat geodesic in ∆ is a geodesic intersecting ∂∆ at
most at the endpoints.

Step 1: If u, v ∈ ∆ can be joined by a neat geodesic, then d∆(u, v) = dX(S(u), S(v)).
Suppose there exists a surface S̄ equivalent to S and vertices u, v ∈ ∆ which can be

joined by a neat geodesic and satisfy:

(4.1) d′ := dX(S̄(u), S̄(v)) < d∆(u, v) =: d.

Choose u, v and S̄ minimizing d. The surface S̄ is a strong locally isometric immersion
(Lemma 4.5), so d > 3. Let g : [0, d] → ∆ be a neat geodesic with endpoints g(0) = u and
g(d) = v.

Since S is flat, ∆ ⊂ E2
4, so we can set g(0) = u, g(1) = p as in Figure 4.2 and assume

that g(d) = v lies in the shaded sector of vertex q (v obviously can be set in the sector
of vertex p and if v was outside the shaded area, then we would interchange u with v,
reversing the direction of the geodesic, as d > 3).

Figure 4.2.
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By minimality of d:

(4.2) d∆(p, v) = dX(S̄(p), S̄(v)) = d− 1.

Since p ∈ ∆ is an internal vertex (g is neat), N(p) ⊂ ∆, in particular q ∈ ∆. As ∆(1) ⊂ E2
4

is an isometric embedding, q and v can be joined by a geodesic in E2
4 contained in ∆ (but

not necessarily neat). Since v lies in the shaded area, we can prolong this geodesic to a
geodesic ḡ : [0, d] → ∆ such that ḡ(0) = u, ḡ(1) = p, ḡ(2) = q, ḡ(d) = v.

Consider the polygonal line ξ = S̄ ◦ ḡ joining vertices S̄(u), S̄(v) ∈ X and a geodesic
ζ : [0, d′] → X with the same endpoints. By (4.2) ξ|[1,d] is a geodesic and as S̄ is a locally
isometric immersion, the vertices ξ(0) = S̄(u), ξ(1) = S̄(p), ξ(2) = S̄(q) are pairwise
distinct. Thus ξ and ζ are injective. The concatenation ζ ∗ ξ−1 need not be injective, but
as ξ|[1,d] is a geodesic, the geodesic ζ can be chosen so that for certain l > l′ > 0 we have
ξ|[l,d] = ζ|[l′,d′] and γ = ζ|[0,l′] ∗ ξ−1|[0,l] is a cycle in X (as in Figure 4.3). Let D be a
minimal surface spanning γ. Choose ζ so that the area of ∆D is minimal.

Consider the systolic disc ∆D. Any vertex on ζ([0, l′]) different from the endpoints
has nonpositive defect (defect 2 is impossible by geodesity and defect 1 by minimality of
the area of ∆D). The sum of defects along ζ is therefore nonpositive, the sum of defects
at its endpoints is at most 4 and the sum of defects along ξ([1, l]) is at most 1 by Remark
3.1. Thus the defect at ξ(1) is not smaller than 1 (by the Gauss-Bonnet Lemma) and is
different from 2 (since S̄ is a strong locally isometric immersion), so it is equal to 1. Thus
by the Gauss-Bonnet Lemma defects at vertices of ζ([0, l′]) are equal to 0 and defect at
ξ(0) is equal to 2, as in the figure.

Figure 4.3.

Therefore S̄(u), S̄(q) ∈ Xζ(1), so by Remark 4.8 we have S̄(N(p)) ⊂ Xζ(1). Thus the
simplicial map S′ : ∆ → X defined on the 0-skeleton by:

S′(x) =
{

S̄(x), if x 6= p
ζ(1), if x = p

is a well-defined surface. However by (4.1)

dX(S′(p), S′(v)) = d′ − 1 < d− 1 = d∆(p, v),

contradicting minimality of d.

Step 2: If u, v ∈ ∆ are internal vertices, then they can be joined by a neat geodesic in ∆.
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Let g : [0, d] → ∆ be an arbitrary geodesic joining u and v. We modify g to another
geodesic g′ with the same endpoints and disjoint from ∂∆. For i = 1, . . . , d− 1 such that
g(i) ∈ ∂∆ we apply (if possible) modifications depicted below:

Figure 4.4.

• modification (a), if def(g(i)) = 1;

• modification (b), if def(g(i)) = 0 and one of g(i− 1), g(i + 1) ∈ ∆ is internal;

• modification (c), if def(g(i)) = −1 and both g(i− 1), g(i + 1) ∈ ∆ are internal.

Since ∆ is wide, in any case g′(i) is an internal vertex, so every modification lowers
the number of vertices in Im g ∩ ∂∆. Hence we perform finitely many modifications and
arrive at the situation, when Im g ∩ ∂∆ is the union of disjoint segments in ∂∆ containing
no positive vertices and having their endpoints at negative vertices. Since ∆ is flat, it
follows from Lemma 3.5 that the intersection is empty.

Step 3: If u ∈ ∆ is an internal vertex and v ∈ ∂∆, then d∆(u, v) = dX(S(u), S(v)).

Let g : [0, d] → ∆ be a geodesic joining u and v. Since ∆ is wide, there is an internal
vertex p ∈ ∆ connected with v by an edge. There are 3 cases:

(a) d∆(u, p) = d∆(u, v) + 1 = d + 1. Then we prolong g to a geodesic g′ with both
endpoints at internal vertices, by adding the edge vp. By Step 2 and Step 1 of the
proof, g′ is mapped by S to a geodesic in X and so is g.

(b) d∆(u, p) = d− 1. Then by Step 2 we can join u and p by a geodesic g′ disjoint from
∂∆. By adding the edge pv we obtain a neat geodesic with endpoints u and v, which
by Step 1 is mapped by S to a geodesic in X and so is g.

(c) d∆(u, p) = d. The link of ∆ at the edge vp consists of two vertices (because p is an
internal vertex). One of them is at distance d− 1 from u and the other, say a, is at
distance d + 1. Adding the edge va we obtain a longer geodesic g′, which still has
one endpoint at internal vertex u and we repeat the argument. Since ∆ is a finite
complex, after finitely many steps we arrive to case (a) or (b).

This concludes Step 3 and completes the proof of the theorem.

It is an important observation that any wide flat surface which is an almost isometric
embedding, is an injective map onto a full subcomplex of X (see the corollary below).
Therefore, we can treat such surfaces simply as full subcomplexes of X.
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Corollary 4.11. Let S be a wide flat surface (in a systolic complex X) which is an almost
isometric embedding. Then:

(1) For every pair of vertices u, v ∈ ∆S holds

d∆S
(u, v)− 1 ≤ dX(S(u), S(v)) ≤ d∆S

(u, v).

If one of u, v is an internal vertex, then the inequality on the right becomes equality.

(2) Every geodesic line in ∆S contained in ∂∆S is mapped by S to a geodesic in X.

(3) The map S : ∆S → X is injective and Im∆S ⊂ X is a full subcomplex.

Proof:

(1) By Theorem 4.10 it suffices to consider the case u, v ∈ ∂∆S . Denote d := d∆S
(u, v).

We need to prove that dX(S(u), S(v)) ≥ d− 1. Since S is wide, there is an internal vertex
v′ ∈ ∆S connected with v by an edge. If d∆S (u, v′) ≥ d, then by the triangle inequality
and Theorem 4.10:

dX(S(u), S(v)) + 1 ≥ dX(S(u), S(v′)) = d∆S
(u, v′) ≥ d.

Otherwise d∆S (u, v′) = d − 1, so there is a geodesic g : [0, d] → ∆S joining u with v such
that g(d − 1) = v′. By the triangle inequality dX(S(u), S(v)) ≥ d − 2. If the equality
holds, then (since by Theorem 4.10 we have dX(S(u), S(v′)) = d − 1) there is a geodesic
ξ in X joining S(u) with S(v′) and passing through S(v). Geodesics ξ and S ◦ g|[0,d−1]

have common endpoints S(u) and S(v′) = S(g(d − 1)). We span a minimal surface D
on the concatenation S ◦ g|[0,d−1] ∗ ξ−1. Applying the Gauss-Bonnet Lemma to ∆D (by
Lemma 4.2 defects at internal vertices of ∆D are nonpositive and by Remark 3.1 the sum
of defects along any of the two boundary geodesics of ∆D is at most 1) we have that the
defect of ∆D at the counterimage of S(v′) is equal to 2. Thus vertices S(v) = S(g(d)) ∈ X
and S(g(d− 2)) ∈ X either coincide or are connected by an edge, whereas g(d− 2)∆S and
g(d) ∈ ∆S are at distance 2. This contradicts the fact that S restricted to the 1-skeleton
of N(v′) = N(g(d− 1)) is an isometric embedding. Thus dX(S(u), S(v)) ≥ d− 1.

(2) Since S is a wide flat surface, it has no boundary vertices of defect 2 and any
two negative boundary vertices are separated by a positive one (Lemma 3.5). Thus every
geodesic g contained in ∂∆S can be prolonged to a geodesic g′ contained in ∂∆S so that
the sum of defects along g′ is equal to 1 (i.e. the first and the last nonzero vertex on g′

have defects 1). Applying the procedure from Step 2 of the proof of Theorem 4.10 (see
Figure 4.4) to g′ we obtain a neat geodesic g′′ with the same endpoints as g′. By Theorem
4.10 g′′ is mapped by S to a geodesic in X, hence such are g′ and g.

(3) By (1) we only need to prove that d∆S
(u, v) = dX(S(u), S(v)) for any vertices

u, v ∈ ∂∆S such that d∆S
(u, v) ≤ 2. Since S is wide, any geodesic connecting such vertices

either is neat or is contained in ∂∆S . Thus Theorem 4.10 and part (2) of the corollary
complete the proof.

Now we are ready to prove the fundamental theorem on flat surfaces in systolic spaces.
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Theorem 4.12. For a wide flat surface S in a systolic complex X, the following are
equivalent:

(1) S is a strong locally isometric immersion;

(2) S is an almost isometric embedding;

(3) S is a minimal surface.

Moreover, if S is a wide flat minimal surface spanning a cycle γ, then any minimal surface
M spanning γ is equivalent to S. In particular, the Hausdorff distance between ImS and
Im M is at most 1.

Proof: In Theorem 4.10 we proved (1) ⇒ (2). Implication (2) ⇒ (1) follows immediately
from the definitions and Corollary 4.11(2). Proposition 4.7 gives (3) ⇒ (1). We need to
prove (1) ⇒ (3).

Let S be a strong locally isometric immersion (thus, by Theorem 4.10, an almost
isometric embedding and by Corollary 4.11(3) an injective map). Denote by M a minimal
surface spanning the cycle S(∂∆S). Let (vi)n

i=1 be a permutation of all internal vertices
of ∆S . We construct a sequence S0, . . . Sn of wide and flat surfaces such that:

(4.3)
S0 = S

Si
∼=vi Si−1, for i = 1, . . . , n

Si(vi) ∈ Im M, for i = 1, . . . , n

Denote ∆ = ∆S = ∆Si for i = 1, . . . , n. Suppose Si has already been constructed. By
Lemma 4.5 Si is a strong locally isometric immersion, so by Theorem 4.10 and Corollary
4.11(3) it is an injective map onto a full subcomplex ImSi ⊂ X. Gluing Si and M along
Si|∂∆ = M |∂∆M

we obtain a map f : P → X from a triangulation P of a sphere (it is
simplicial, since ∆ is wide). By Theorem 2.4 f can be extended to F : B → X, where B
is a triangulation of a ball that has no internal vertices and satisfies ∂B = P . The link
Pvi+1 is a cycle of length 6 and the link Bvi+1 is a simplicial disc (not necessarily systolic)
such that ∂Bvi+1 = Pvi+1 . Since Si is injective and Im Si ⊂ X is a full subcomplex, any
internal vertex w ∈ Bvi+1 lies in ∆M ⊂ P , so is mapped by F into Im M .

To complete the proof we need the following lemma, which will be proved later:

Lemma 4.13. Let X be a systolic complex and ∆ a simplicial disc (possibly not systolic) of
perimeter 6. If there exists a simplicial map f : ∆ → X such that f |∂∆ is an isomorphism
onto a cycle in X having no diagonals, then there is an internal vertex w ∈ ∆ such that
f(∂∆) ⊂ Xf(w).

Applying the lemma to F |Bvi+1
(it satisfies the assumptions, since Si is a locally

isometric immersion) we obtain an internal vertex w ∈ Bvi+1 such that the simplicial map
defined on 0-skeleton by:

Si+1(x) =
{

Si(x), if x 6= vi+1

F (w), if x = vi+1

extends to a surface. Clearly Si+1 satisfies (4.3).
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The last surface in the sequence, Sn, by (4.3) maps the set of internal vertices of ∆
injectively into the set

{M(w) : w ∈ ∆M is an internal vertex}

(by Lemma 4.5 and Theorem 4.10 Sn is an almost isometric embedding and by Corollary
4.11(3) it is injective). Thus, since M is a minimal surface and M |∂∆M

= Sn|∆, by Pick’s
Formula ∆M has not more internal vertices than ∆ has. It follows that Sn maps ∆(0)

bijectively onto (Im M)(0) and M is injective. As Im Sn ⊂ X is a full subcomplex (Corollary
4.11(3)), we have Im M ⊂ ImSn. But both Im M and Im Sn are simplicial discs and they
have a common boundary, so Im M = Im Sn. Moreover, ∆M

∼= Im M = Im Sn
∼= ∆.

Therefore, identifying ∆M with ∆ we obtain M = Sn, so Sn is a minimal surface and so
is S.

As the above construction shows, if S is a wide flat minimal surface spanning a cycle
γ, then any minimal surface M spanning γ is equivalent to S. In particular, the Hausdorff
distance between Im S and Im M is at most 1 (Lemma 4.6).

Proof of Lemma 4.13: We modify f to f ′ : ∆′ → X, where ∆′ is a systolic disc such that
∂∆ = ∂∆′, the internal vertices of ∆′ are vertices of ∆, and f |∂∆ = f ′|∂∆′ . If ∆ contains
a cycle γ of length 3 not bounding a triangle in ∆, then we cut out the disc of ∆ bounded
by γ and glue in a single triangle. By flagness of X we modify f . If ∆ does not contain
such cycles and is not systolic, then there is an internal vertex v ∈ ∆ adjacent to 4 or 5
triangles. Then we modify ∆ by cutting out the open star of v and gluing in a simplicial
disc with no internal vertices, such that f can be extended over the new triangulation (this
is possible by systolicity of X). These operations decrease the number of internal vertices
of ∆, so the procedure terminates, producing a systolic disc ∆′ such that ∂∆ = ∂∆′ and
a simplicial map f ′ : ∆′ → X which extends f |∂∆.

Nonconsecutive vertices of ∂∆ = ∂∆′ are not connected by an edge, because f(∂∆)
has no diagonals. Moreover, by the isoperimetric inequality the area of ∆′ is at most 6,
so by Pick’s Formula ∆′ has at most one internal vertex. Therefore ∆′ = ∂∆′ ∗ w, where
w ∈ ∆′ is the only internal vertex. As our procedure did not add any new vertex, w is an
internal vertex of ∆ and f(w) = f ′(w). Moreover, since f ′(∂∆′) = f(∂∆) is a cycle in X
with no diagonals, f ′(w) 6∈ f(∂∆′), so f(∂∆) ⊂ Xf(w).

Theorem 4.12 gives an alternative proof of the following theorem, proved by P. Przy-
tycki in [P] (for the definition of a flat see Section 5):

Corollary 4.14. Let X be a systolic complex, admitting a simplicial cocompact and
properly discontinuous action of a group G. Then X is Gromov-hyperbolic if and only if
it does not contain flat.

To prove the Corollary we need the following lemma:

Lemma 4.15. Let ∆ be a systolic disc and γ ⊂ ∂∆ a geodesic in ∆.
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(1) Denote by ∆′ ⊂ ∆ the subcomplex obtained by cutting out open stars of every
vertex v ∈ γ. Then hdist∆(∆, ∆′) = 1 and either ∆′ has a disconnecting vertex or
it is a systolic disc such that γ′ := ∂∆′ \ ∂∆ is a geodesic.

(2) If ∂∆ is a concatenation of three geodesics: α, β and γ, then for every natural c
γ ⊂ N2c(α∪β ∪∆c) holds, where ∆c ⊂ ∆ is the subcomplex spanned by all vertices
v ∈ ∆ satisfying dist(v, ∂∆) ≥ c.

Proof: Suppose ∆′ has no disconnecting vertices and γ′ is not a geodesic in ∆′. Let
v′, w′ ∈ γ′ ⊂ ∆′ be endpoints of the shortest segment of γ′ which is not a geodesic in ∆′.
Connect v′ and w′ by a geodesic g′ in ∆′, choose vertices v, w ∈ γ connected by edges with
v′ and w′, respectively. Let v, w and g′ be such that the subcomplex D ⊂ ∆ bounded by
the loop g−1 ∗ vv′ ∗ g′ ∗ww′, where g is the segment of γ with endpoints v and w, has the
minimal area. As D is a systolic disc, by Remark 3.1 the sum of its defects along g is at
most 1, by minimality of its area the sum of defects along g′ is nonpositive, defects at v,
w, v′ and w′ are at most 1 (by minimality of the length of [v′, w′] ⊂ γ′ and minimality of
the area of D), what gives a contradiction with the Gauss-Bonnet Lemma. This proves
(1).

To prove (2) it suffices to show that γ ⊂ Nc(α ∪ β ∪ ∆γ
c ), where ∆γ

c ⊂ ∆ denotes
the subcomplex spanned by all vertices v ∈ ∆ satisfying dist(v, γ) ≥ c. We proceed by
induction on c using (1), applying the inductive assumption to maximal subcomplexes of
∆′ having no disconnecting vertices.

Proof of Corollary 4.14: Suppose X is not Gromov-hyperbolic. Then for every n
there exists a loop being the concatenation of three geodesics αn, βn, γn, such that γn 6⊂
Nn(αn ∪ βn). Let Sn be a minimal surface spanning this loop. Thus by Lemma 4.15(2)
there exists a vertex v ∈ ∆Sn such that dist∆Sn

(v, ∂∆Sn) ≥ n
2 . Since by the Gauss-Bonnet

Lemma and Remark 3.1, there are at most 3 negative internal vertices in ∆Sn , there is
a vertex w on a geodesic joining v with the closest vertex in ∂∆Sn , such that N 1

8 ·n
2
(w)

does not contain a negative internal vertex, so it is an equilaterally triangulated regular
hexagon of side length [ 18 · n

2 ]. The 1-skeleton of the hexagon is isometrically embedded
into ∆Sn , so by Theorem 4.12 is isometrically embedded into X. Thus by cocompactness
of the action of G and by the standard diagonal argument (X is uniformly locally finite,
since G acts cocompactly and properly discontinuously), we obtain a flat in X.

4.3. Stability of minimal surfaces

Now we answer question (4) from the introduction, namely we prove stability of min-
imal surfaces under small modifications of their boundaries. The theorem below concerns
more general situation than wide flat surfaces, namely injective maps whose images are
full subcomplexes of X (by Corollary 4.11(3) any wide flat surface is such). We expect
stability of minimal surfaces to hold in full generality, i.e. that the assumption on S and
S′ to be injective maps onto full subcomplexes is unnecessary.

To formulate the theorem we need to define the function measuring how much one of
the cycles has to be deformed to obtain the other cycle. Given cycles γ and γ′ in a systolic
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complex X, we denote by d(γ, γ′) the minimum of the following expression:

max{dX(f(v), f ′(v)), v ∈ C(0)}

taken over all triangulations C of a circle and over all simplicial maps f : C → γ and
f ′ : C → γ′ that are surjective and monotonous (i.e. counterimages of vertices in γ or γ′

are segments in C).

Theorem 4.16. Let γ and γ′ be cycles in a systolic complex X with d(γ, γ′) = c and let
S and S′ be minimal surfaces spanning them. If S and S′ are injections and Im S, Im S′

are full subcomplexes of X, then:

(1) hdistX(Im S, Im S′) ≤ c + 1.

(2) If S is a flat surface and w ∈ ∆(0)
S satisfies dist(w, ∂∆S) > c + 1, then S̄(w) ∈ Im S′

for some surface S̄ which is w-equivalent to S. In particular, S(w) ∈ N1(Im S′).

Proof: Choose C, f and f ′ realizing d(γ, γ′) and denote successive vertices of C by
t1, . . . , tn. For i = 1, . . . , n choose a geodesic gi in X joining f(ti) = vi ∈ γ with f ′(ti) =
v′i ∈ γ′ (we allow gi to be a single vertex). The concatenation vi+1vi ∗ gi ∗ v′iv

′
i+1 ∗ g−1

i+1 (we
use the cyclic order of indices) is a closed path in X, so by Lemma 4.2 there is a simplicial
map si : Di → X from a systolic disc Di mapping ∂Di to this path.

Step 1: For any vertex w ∈ ∆S we have S(w) ∈ N1(Im S′∪ Im s1∪ . . .∪ Im sn). Moreover,
if S is flat and w ∈ ∆S is an internal vertex, then there is a surface S̄ ∼=w S such that
S̄(w) ∈ Im S′ ∪ Im s1 ∪ . . . ∪ Im sn.

We glue maps S, S′ and s1, . . . , sn to obtain a simplicial map f : P → X, where P is a
triangulation of a sphere. It can be extended to F : B → X, for some triangulation B of a
ball such that ∂B = P and B has no internal vertices (Theorem 2.4). In the case w ∈ ∂∆S

the statement is immediate. Thus consider the case when w is an internal vertex of ∆S . As
w ∈ ∆S ⊂ P ⊂ B, consider the link Bw – it is a filling of the cycle Pw. Since S is injective
and Im S ⊂ X is a full subcomplex, Bw has at least one internal vertex and internal vertices
of Bw are disjoint with ∆S ⊂ P . Thus S(w) ∈ N1(Im S′∪ Im s1∪ . . .∪ Im sn). If S is a flat
surface and w ∈ ∆S an internal vertex, then by Lemma 4.13 there is a surface S̄ which is
w-equivalent to S such that S̄(w) ∈ ImS′ ∪ Im s1 ∪ . . . ∪ Im sn.

Step 2: Let D be a systolic disc and let a1, a2, b1, b2 ∈ ∂D be vertices such that ∂D is
the concatenation of the edge a1a2 (or the vertex a1, if a1 = a2), the edge b1b2 (or the
vertex b1, if b1 = b2) and geodesics [a1, b1] and [a2, b2]. Then D is spanned by all geodesics
joining ai with bj , for i, j = 1, 2.

We proceed by induction on the area of D. The statement is trivial when D is a
single triangle. If there is a vertex v ∈ (ai, bi) ⊂ ∂D of positive defect (i.e. of defect 1, by
geodesity of [ai, bi]), then we cut out two triangles adjacent to v obtaining either a smaller
disc D′ or two discs D′ and D′′ intersecting at a single vertex and apply the inductive
assumption.

If a1 6= a2 and D has defect 2 at ai, then we cut out the only triangle adjacent to ai

and apply the inductive assumption. We proceed similarly with b1 and b2.
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If none of the above cases occur, then defects at a1 and a2 are not greater than 1 (if
a1 6= a2) or the defect at a1 = a2 is not greater than 2 and similarly with b1 and b2, and
the sum of defects along the geodesic [ai, bi] is nonpositive, for i = 1, 2. Thus the sum of
defects at vertices on ∂D does not exceed 4, contradicting the Gauss-Bonnet Lemma.

Step 3: Im S ⊂ Nc+1(Im S′) and ImS′ ⊂ Nc+1(Im S). If S is flat and w ∈ ∆S is an
internal vertex such that dist(w, ∂∆S) > c + 1, then S̄(w) ∈ ImS′ for some surface S̄
w-equivalent to S.

By Step 2, Im si ⊂ Nc(γ′), for i = 1, . . . , n, so by Step 1 we have Im S ⊂ Nc+1(Im S′).
Similarly we obtain Im S′ ⊂ Nc+1(Im S). The second statement follows from Lemma 4.13
applied to S|Bw

and the fact that Im si ⊂ Nc(γ) ⊂ Nc(S(∂∆S)).

The following corollary provides the answer to question (3) from the introduction in
a more general case than Theorem 4.12 does.

Corollary 4.17. If S and S′ are minimal surfaces which are injections onto full subcom-
plexes spanning the same cycle, then the Hausdorff distance between them is at most 1.

5. Flats in systolic complexes

A flat in a systolic complex X is a simplicial map F : E2
4 → X which is an isometric

embedding of 1-skeleton of E2
4 into X. We will identify F with its image and treat F as

a subcomplex of X.

Definition 5.1. Two flats F and F ′ in a systolic complex X are called equivalent if they
are at finite Hausdorff distance.

The above definition is different from the one for flat surfaces (Definition 4.4). How-
ever, in Lemma 5.3 we provide a characterization of flat equivalence similar to flat surfaces
equivalence. In Theorem 5.4 we show that the Hausdorff distance between equivalent flats
is actually at most 1 and there is a unique simplicial retraction onto F of the subcomplex
of X spanned by all flats equivalent to F .

Now we restate the main theorem from Section 4 (Theorem 4.12) for flats. In order
to do it we generalize the notions of a locally isometric immersion and a strong locally
isometric immersion for flats by replacing a triangulated disc ∆S with the flat systolic
plane E2

4 in Definition 4.3.

Theorem 5.2. Let X be a systolic complex and F : E2
4 → X a simplicial map.

(1) If F is a strong locally isometric immersion, then it is a flat.

(2) If F is a locally isometric immersion and diam(Im F ) ≥ 3, then it is a flat.

Proof: Part (1) of the theorem follows from Theorem 4.12 applied to F |∆n for a sequence
of regular hexagons ∆n ⊂ E2

4. To prove (2) we need to show that under the additional
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assumption diam(Im F ) ≥ 3, a locally isometric immersion is a strong locally isometric
immersion.

Suppose F is locally isometric, but not strong locally isometric. Then by Proposition
4.7 there is an edge uv ⊂ E2

4 such that F |∂N(uv) can be extended to a surface S (∂∆S =
∂N(uv)) so that ∆S has at most one internal vertex (Pick’s Formula). Thus either ∂∆S

has a diagonal joining two non-consecutive vertices (which contradicts the fact that F is
locally isometric), or ∆S = w ∗ ∂∆S , where w ∈ ∆S is the only internal vertex. Define
x = S(w) ∈ X and put:

∆n =
{

N(uv), if n = 0
N(∆n−1), if n ≥ 1

Proceeding by induction we prove that F (∆n) ⊂ Xx, for every n ≥ 0.
(i) We already know that F (∂∆0) ⊂ Xx, so applying Remark 4.8 to hexagons N(u)

and N(v) we obtain F (∆0) ⊂ Xx.
(ii) Suppose F (∆n−1) ⊂ Xx. Denote successive vertices of ∂∆n by b1, . . . , bk, such that

b1 has defect 0. By induction on i we obtain bi ∈ Xx for i = 1, . . . , k. It follows
from Remark 4.8 applied to a hexagon with the center and two opposite vertices in
∂∆n−1 (in case i = 1) or to a hexagon with the center in ∂∆n−1, vertex bi−1 and
the opposite vertex in ∆n−1. (in case i > 1). Thus the image of ∆n is contained in
Xx.

It follows that Im F ⊂ Xx, hence the diameter of Im F is not greater than 2, contrary
to the assumption.

We define for two flats a relation ∼=v, similar to that from Definition 4.4: flats F and
F ′ are v-equivalent if F (x) = F ′(x) for all vertices x ∈ E2

4 distinct from v.

Lemma 5.3. Let F and F ′ be equivalent flats in a systolic complex X. Then there exist
a sequence of vertices v1, v2, . . . ∈ E2

4 and a sequence of flats F = F0, F1, F2, . . . such that:

• Fi
∼=vi Fi−1, for i = 1, 2, 3, . . .,

• the flat F ′′ = lim
n→∞

Fn (pointwise convergence) has the same image as F ′.

Moreover, we can choose (vi)∞i=1 to be an arbitrary permutation of vertices of E2
4.

Since X(0) is a discrete space, the pointwise convergence of flats is equivalent to
stabilizing of sequences F0(v), F1(v), . . . ∈ X for all vertices v ∈ E2

4. We therefore prove
that equivalent flats are obtained from each other by a (possibly infinite) sequence of small
deformations such that on every compact subcomplex K ⊂ E2

4 only finitely many of them
are applied.

Proof: Let (vi)∞i=1 be any permutation of vertices of E2
4. We construct a sequence of flats

(Fi)∞i=0 such that:

(5.1)
F0 = F

Fi
∼=vi Fi−1, for i = 1, 2, . . .

Fi(vi) ∈ Im F ′, for i = 1, 2, . . .
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Suppose we have already constructed Fn. Denote c = hdistX(Fn, F ′) (c < ∞, since Fn

and F ′ are equivalent). If Fn(vn+1) ∈ ImF ′, then we put Fn+1 := Fn. Otherwise, consider
the regular hexagon H ⊂ E2

4 of side length 40c with center vn+1. Denote by a1, . . . , a6

the images by Fn of the vertices of H and by σ1, . . . , σ6 the images by Fn of its sides. Let
ξi be the shortest geodesic joining ai with F ′ and denote its endpoint by bi ∈ F ′ (possibly
bi = ai). Since flats are isometric embeddings, we can join bi with bi+1 by a geodesic τi

contained in F ′, for i = 1, . . . , 6 (we use the cyclic order of indices). By Lemma 4.2 there
exist simplicial maps:

• h′ : H ′ → X, where H ′ is a systolic disc and h′ maps ∂H ′ to the closed path τ1∗ . . .∗τ6

such that Im H ′ ⊂ Im F ′;

• si : Di → X, where Di is a systolic disc and si maps ∂Di to the closed path ξi ∗ τi ∗
ξ−1
i+1 ∗ σ−1

i , for i = 1, . . . , 6.

Gluing Fn|H , h′ and s1, . . . , s6 we obtain a simplicial map p : S → X from certain
triangulation S of a sphere. By Theorem 2.4 we extend it to P : B → X, where B is a
triangulation of a ball that has no internal vertices and satisfies ∂B = S. Thus Bvn+1 is a
simplicial disc of perimeter 6 (as the link Svn+1 is a cycle of length 6). Applying Lemma
4.13 to P |Bvn+1

we obtain an internal vertex y ∈ Bvn+1 such that P (∂Bvn+1) ⊂ XP (y). We
put Fn+1 : E2

4 → X to be the simplicial map defined on the 0-skeleton by:

Fn+1(x) =
{

Fn(x), if x 6= vn+1

P (y), if x = vn+1

The map Fn+1 coincides with the flat Fn at all vertices but vn+1 and for any vertex w ∈ E2
4

there is a vertex w′ ∈ E2
4 and a geodesic joining w with w′ that passes through vn+1, so:

d(w, w′) = d(Fn+1(w), Fn+1(w′)) ≤ d(Fn+1(w), Fn+1(vn+1)) + d(Fn+1(vn+1), Fn+1(w′)) ≤
≤ d(w, vn+1) + d(vn+1, w

′) = d(w,w′)

Thus all inequalities are actually equalities, so Fn+1 is a flat.
To see that Fn+1 satisfies (5.1) we need to prove that P (y) ∈ Im F ′′. Since Fn|H is an

isometric embedding, y ∈ Bvn+1 is contained in H ′ ∪D1 ∪ . . . ∪D6. Moreover, by Lemma
3.4:

Di ⊂ N 1
6 (|ξi|+|τi|+|ξi+1|+|σi|)(∂Di) ⊂ N 1

6 (c+42c+c+40c)(∂Di) = N14c(∂Di) ⊂ N36c(∂H)

so P (Di) ⊂ N36c(P (∂H)), while

dist(y, P (∂H)) ≥ dist(Fn(vn), Fn(∂H))− 1 = 40c− 1.

Thus y /∈ Di, for i = 1, . . . , 6, so y ∈ H ′ and therefore P (y) ∈ Im F ′′.
The flat F ′′ = lim

n→∞
Fn satisfies Im F ′′ ⊂ Im F ′, hence Im F ′′ = Im F ′ (as E2

4 is not

isomorphic to a proper subcomplex).
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5.1. Thickenings of flats

Theorem 5.4. Let F be a flat in a systolic complex X. Denote by Th(F ) ⊂ X (the
thickening of F ) the full subcomplex spanned by all flats at finite Hausdorff distance from
F . Then:

(1) Every maximal simplex of Th(F ) has nonempty intersection with F .

(2) There is a unique simplicial retraction r : Th(F ) → F . Moreover, r restricted to
any flat F ′ ⊂ Th(F ) is an isometry.

(3) Every map s : F (0) → Th(F ) such that r ◦ s = idF (0) extends to a flat and every flat
in Th(F ) is of this form. Moreover, r−1(v) is a simplex in X for any vertex v ∈ F .

Proof: For every vertex v ∈ E2
4 denote by σv the simplex spanned by vertices F ′(v) for

all flats F ′ that are v-equivalent to F (these vertices span a simplex by Fact 2.2). Clearly
σv ⊂ Th(F ). Notice that by Lemma 5.3 for every flat F ′ ⊂ Th(F ) and for every vertex
v ∈ E2

4 there is a flat F1 such that F1
∼=v F and F1(v) = F ′(v). Hence Th(F ) is spanned

by σv for v ∈ E2
4.

If F ′ ∼=v F ∼=w F ′′ for some distinct vertices v, w ∈ E2
4, then by Lemma 5.3 (applied

to F ′ and F ′′) there exists a flat F̄ such that F ′ ∼=w F̄ ∼=v F ′′. Thus:

F̄ (x) =





F (x), if x 6= v, w
F ′(v), if x = v
F ′′(w), if x = w

Since F̄ restricted to 1-skeleton of E2
4 is an isometric embedding, we have

dX(F ′(v), F ′′(w)) = dE2
4

(v, w).

Hence there are no edges joining σv with σw, if v 6= w ∈ E2
4 are not connected by an edge

and every vertex of σv is connected by an edge with every vertex of σw, if v, w ∈ E2
4 are

connected by an edge. Thus:

(5.2)

(Th(F ))(0) =
⋃

v∈V
(σv)(0)

(Th(F ))(1) =
⋃

uv∈E
(σu ∗ σv)(1)

Th(F ) =
⋃

uvw∈T
(σu ∗ σv ∗ σw)

where V, E and T denote sets of vertices, edges and triangles of E2
4, respectively. This

implies (1), as maximal simplices of Th(F ) are σu ∗ σv ∗ σw, where uvw ∈ T .
Any map s : F (0) → Th(F ), such that s(v) ∈ σv for every v ∈ F (0) extends to an

injective map S : F → Th(F ) such that Im S ⊂ X is a full subcomplex. By Theorem
5.2(2) S is a flat and by Lemma 5.3 every flat in Th(F ) has this form.
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Let r : Th(F ) → F be a simplicial retraction. For every vertex p ∈ σv there is a flat
F̄ ∼=v F such that F̄ (v) = p. Since r|F = idF and r is simplicial, r(p) = v. Thus r(σv) = v,
for every v ∈ F . Clearly a function mapping σv to v for every v ∈ F , has a simplicial
extension to the unique simplicial retraction r : Th(F ) → F , which when restricted to any
flat is an isometry. This completes the proof of (2) and (3).

Corollary 5.5. The action of any group G on the thickening Th(F ) induces an action of
G on E2

4. Moreover, if Th(F ) is locally finite and the action is properly discontinuous,

then so is the induced action on E2
4.

Proof: Denote by rF : Th(F ) → F the retraction constructed in Theorem 5.4 and by
ag : Th(F ) → Th(F ) the action of g ∈ G on Th(F ). Notice that by (5.2) the 1-skeletons
of σv (for v ∈ E2

4) are precisely the connected components of the subgraph of Th(F )
consisting of those edges that cannot be extended to a geodesic of length 2 inside Th(F ).
Thus ag permutes simplices σv and we can define the action of G on E2

4 by:

G 3 g 7→ (rF ◦ g)|F ∈ Aut(F ) ∼= Aut(E2
4).

We need to show that (rF ◦ g′) ◦ (rF ◦ g) = rF ◦ (g′g) for any g, g′ ∈ G. Both maps restrict
to the same isometry ϕ : g−1(F ) → F . Thus:

ϕ−1 ◦ (rF ◦ g′) ◦ (rF ◦ g) = ϕ−1 ◦ rF ◦ (g′g)

as by Theorem 5.4 there is a unique simplicial retraction of Th(F ) = Th(g−1(F )) on the
flat g−1(F ), what completes the proof of the main part of the corollary. The second part
follows from the fact that r−1

F (v) is a simplex in Th(F ) for any vertex v ∈ F and Th(F )
is locally finite.

6. Flat Torus Theorem

In this section we study virtually abelian subgroups of rank at least 2 in systolic groups.
Actually, Januszkiewicz and Świa‘tkowski proved that systolic groups do not contain abelian
subgroups of rank greater than 2 ([JS2], Corollary 5.5; we give an alternative proof of
that), so we are mainly interested in actions of Z2 on systolic complexes. Actions of finite
extensions of Z2 are described in Corollary 6.2.

Let X be a simplicial complex and G a group acting on X by simplicial automorphisms.
Recall, that G acts cocompactly if there is a compact subset K ⊂ X intersecting every
orbit of the action, and properly discontinuously if the stabilizer of any vertex v ∈ X
is finite (this is a weaker condition than the usual definition for metric spaces, but for
simplicial complexes it is equivalent to the standard one).

If X admits a cocompact properly discontinuous action of a group, then it is uniformly
locally finite (i.e. there is a finite upper bound for valences of its vertices). Thus the action
of G is cocompact if and only if there are finitely many orbits of vertices.
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For any g ∈ G we define Min(g) to be the subcomplex spanned by vertices x ∈ X
realizing the minimal displacement of g, i.e. d(x, g(x)) = min

y∈X
d(y, g(y)). We also define:

Min(G) =
⋂

g∈G

Min(g)

We show that Min(G) is nonempty for G ∼= Z2 acting properly discontinuously on a systolic
complex X. In fact, we prove that Min(G) is a thickening of a G-invariant flat. This result
is a systolic analogue of the Flat Torus Theorem for CAT(0)-spaces ([BH]).

Theorem 6.1. (Flat Torus Theorem) Let G be a noncyclic free abelian group acting
simplicially and properly discontinuously on a uniformly locally finite systolic complex X.
Then:

(1) G is isomorphic to Z2.

(2) There is a G-invariant flat F ⊂ X, unique up to flat equivalence.

(3) Min(G) is nonempty and is equal to the thickening of a G-invariant flat.

Proof: Since G is torsion-free and acts properly discontinuously, the action is also free.
In Steps 1–4 we prove the theorem for G ∼= Z2. In Step 5 we complete the proof.

Step 1: There exists an H-invariant flat in X for a certain finite-index subgroup H < G.

Choose a vertex x ∈ X and elements g, h ∈ G generating G. Connect x with g(x)
and h(x) by geodesics α and β, respectively, and denote by γ the closed path being the
concatenation α ∗ g(β) ∗ h(α−1) ∗ β−1. By Lemma 4.2 there is a map f : ∆ → X, where
∆ is a systolic disc, mapping ∂∆ onto γ.

Denote by Y the full subcomplex of X spanned by the orbits of all vertices of f(∆).
Then Y is G-invariant and G acts freely and cocompactly on Y . Thus by local finiteness
of Y there is a finite-index subgroup H < G generated by gn and hn for some n such that:

(6.1) min
p∈H\{1},y∈Y (0)

dY (y, p(y)) > 3,

so the quotient space Y/H is a flag simplicial complex. Since links of Y/H are isomorphic
to links of Y , the quotient complex is locally 6-large.

By the construction of Y , x ∈ Y and there are such geodesics α′ and β′ joining x with
gn(x) and hn(x), respectively, that there exists a simplicial map f : ∆′ → Y , where ∆′ is a
simplicial disc mapping ∂∆′ to the concatenation α′ ∗ gn(β′) ∗ hn(α′−1) ∗ β′−1. This gives
us a map f ′ : T → Y/H, where T is a triangulation of a torus. The following diagram of
simplicial maps commutes:

T̃
f̃ ′−→ Ỹyy Y ↪→ Xy

T
f ′−→ Y/H
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where T̃ is the universal covering of T , i.e. a triangulation of a plane (possibly not systolic).
Now we modify T to a systolic triangulation, applying three kinds of operations:

(a) If there exists in T a cycle ξ of length 3 not bounding a triangle in T , then by
(6.1) f(ξ) is homotopically trivial loop in Y/H and since f∗ : π1(T ) → π1(Y/H)
is injective, ξ is homotopically trivial in T . Therefore it disconnects T into two
components, one of them being a simplicial disc. Replacing the disc with a single
triangle we obtain another triangulation of a torus T ′. The map f can be extended
over the new triangulation, since Y/H is a flag complex.

(b) If any cycle of length 3 in T bounds a triangle and there is a vertex v ∈ T adjacent
to 4 or 5 triangles, we cut out the open star of v and glue a filling without internal
vertices, such that f ′ can be extended over the new triangulation (it is possible since
Y/H is locally 6-large), obtaining another simplicial triangulation of a torus T ′.

(c) If any cycle of length 3 in T bounds a triangle and there exists a vertex v adjacent
to 6 or more triangles such that f ′(Tv) can be filled without internal vertices, then
we apply the procedure from (b) also in this case.

As we modify T , we modify f ′. Since each operation (a), (b), (c) lowers the number
of vertices in T , the procedure terminates. Therefore, without loss of generality, we can
assume that any vertex in T is adjacent to at least 6 triangles and f ′|∂N(v) cannot be
extended over a simplicial disc with boundary ∂N(v) and with no internal vertices, for
every vertex v ∈ T . Since the Euler characteristic of a torus is 0, this implies that any
vertex is adjacent to 6 triangles, so the universal covering T̃ is isomorphic to E2

4 and
f̃ ′ : T̃ → Ỹ is a locally isometric immersion (Proposition 4.7(1)). Composing f ′ with the
covering map Ỹ → Y we obtain a locally isometric immersion p : E2

4 → Y , whose image is
H-invariant. Since Y ⊂ X is a full subcomplex, p treated as a map to X is also a locally
isometric immersion, so by Theorem 5.2 it is an H-invariant flat (the diameter of its image
is greater than 3 by local finiteness of X and freedom of the action of G).

Step 2: If there exists in X an H-invariant flat F , where H < G is a finite-index subgroup,
then there exists a G-invariant flat F ′. Moreover, any vertex v ∈ Th(F ) is contained in
some G-invariant flat.

Let g1, . . . , gn ∈ G be representants of all cosets of H. Since G is abelian, Fi = gi(F )
are H-invariant flats. As F (0) consists of a finite number of H-orbits, there is a constant c
such that hdistX(Hx, F ) ≤ c and similarly hdistX(Hgi(x), Fi) ≤ c. As any two H-orbits
are at finite Hausdorff distance, Fi is at finite Hausdorff distance from F , so by Theorem
5.4 we have Fi ⊂ Th(F ), for i = 1, . . . , n. For every g ∈ G there is i such that g(F ) = Fi, so
g(Th(F )) = Th(Fi) = Th(F ) (the last equality follows from the finite Hausdorff distance
between Fi and F ) and Th(F ) is therefore G-invariant. By Corollary 5.5 the retraction
r : Th(F ) → F ∼= E2

4 defined in Theorem 5.4 induces an action of G on E2
4, which is free,

as G is torsion-free. We choose equivariantly vertices F ′(v) ∈ r−1(v) ⊂ X for v ∈ E2
4 and

by Theorem 5.4(3) extend to a G-invariant flat F ′ : E2
4 → X.

Step 3: If F is a G-invariant flat, then F ⊂ Min(G). In particular, Min(G) is nonempty.
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Let g ∈ G, v ∈ F and y ∈ Min(g). There is a g-invariant geodesic in F passing
through v, on which g acts by translation. By the triangle inequality:

n·d(v, g(v)) = d(v, gn(v)) ≤ d(v, y)+d(y, gn(y))+d(gn(y), gn(v)) ≤ 2·d(v, y)+n·d(y, g(y))

for any natural n, so d(v, g(v)) ≤ d(y, g(y)), hence v ∈ Min(g). As this holds for any g ∈ G
and any vertex v ∈ F , we have F ⊂ Min(G).

Step 4: If F is a G-invariant flat, then Min(G) = Th(F ).

By Steps 2 and 3 we have Th(F ) ⊂ Min(G). Now we prove the opposite inclusion.
Let v ∈ Min(G) be an arbitrary vertex. It suffices to find a G-invariant flat containing v.

Choose in F (1) two convex half-lines k and l with a common endpoint x intersecting
at the angle 2

3π. Since the action of G on F ∼= E2
4 is cocompact, there are non-trivial

elements g, h ∈ G such that g(x) ∈ k and h(x) ∈ l. Replacing g and h by some powers
we can assume that d(x, g(x)) = d(x, h(x)) > 3. Therefore the vertices x, g(x), h(x),
g2h(x), gh2(x), g2h2(x) and the geodesics α (joining x with g(x)), β (joining x with h(x)),
γ (joining h(x) with gh2(x)), gh2(α), g2h(β), gh−1(γ) bound a regular hexagon in F (as
in Figure 6.1(a)).

Figure 6.1.

Join vertices v, g(v), h(v), g2h(v), gh2(v), g2h2(v) in X by geodesics ξ, ζ, χ and
gh2(ξ), g2h(ζ) and hg−1(χ) (as in Figure 6.1(b)). Since x, v ∈ Min(G), for any elements
p, q ∈ G we have:

(6.2) d(p(x), q(x)) = d(p(v), q(v))

Notice that any two consecutive sides of the hexagon in Figure 6.1(a) form a geodesic in
X and by (6.2) so do consecutive sides of the hexagon in Figure 6.1(b) – thus they intersect
only at the endpoints. Since the distance between opposite vertices of the hexagon in (a) is
twice the length of its side, the non-consecutive sides are also disjoint in (b) (again by (6.2)).
Thus the closed path being the concatenation ξ∗ζ ∗χ∗gh2(ξ−1)∗g2h(ζ−1)∗gh−1(χ−1) is a
cycle in X. Let S be a minimal surface spanning this cycle and denote by y1, . . . , y6 ∈ ∂∆S

vertices mapping to vertices of the hexagon in (b).
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By Lemma 4.2 the simplicial disc ∆S is systolic, i.e. every internal vertex has nonpos-
itive defect. Since any two consecutive sides of the hexagon in (b) form a geodesic in X,
any vertex v ∈ ∂∆S is adjacent to at least 2 triangles and ∂∆S is a union of three geodesic
arcs: [y1, y3], [y3, y5], [y5, y1]. By Remark 3.1 the sum of defects along any of the three
arcs is at most 1. As the sum of defects at internal vertices of ∆S is nonpositive, and by
the Gauss-Bonnet Lemma the sum of defects at all vertices of ∆S is 6, we have that each
internal vertex has defect 0 (is adjacent to exactly 6 triangles) and defects at y1, y3, y5 are
equal to 1. Similarly we prove that the defects at y2, y4, y6 are equal to 1 (as in Figure
6.1(b)).

Since [yi−1, yi]∪[yi, yi+1] and [yi, yi+1]∪[yi+1, yi+2] are geodesics in ∆S , for i = 1, . . . , 6
(using the cyclic order of indices), for any vertex w ∈ (yi, yi+1) ⊂ ∂∆S of defect 1 there
are vertices of negative defects w′ ∈ (yi, w) and w′′ ∈ (w, yi+1). Moreover, any two vertices
w1, w2 ∈ (yi, yi+1) ⊂ ∂∆S of defects 1 are separated by a vertex of negative defect. Thus
either the sum of defects along (yi, yi+1) is negative or there is no positive vertices (and
also no negative vertices) on (yi, yi+1). As the sum of defects at vertices of ∂∆S is 6 and
defects at yi are equal to 1, for i = 1, . . . , 6, it follows that there are no nonzero vertices
on ∂∆S different from y1, . . . , y6. Thus ∆S is a regular equilaterally triangulated hexagon
(isomorphic to the one in Figure 6.1(a)).

Let H < G be the subgroup generated by g and h. As H satisfies (6.1), X/H is a locally
6-large simplicial complex. As a quotient of S we obtain a simplicial map f : T → X/H,
where T is a triangulation of a torus such that each vertex of T is adjacent to exactly 6
triangles. If there is a vertex y ∈ T such that f(Ty) can be filled without internal vertices,
we can apply the minimizing procedure from Step 1 (starting with operation (c)), resulting
in a triangulation of a torus T ′ and a simplicial map f ′ : T ′ → X/H such that the universal
covering f̃ ′ : T̃ ′ → X is a flat F ′ in X at finite Hausdorff distance from F . Moreover, F ′

has a smaller number of H-orbits of vertices than F , what is impossible as by Corollary
5.5 retractions rF and rF ′ induces isomorphic actions on E2

4.
Thus the universal covering T̃ is isomorphic to E2

4 and f̃ : E2
4 → X is a locally isomet-

ric immersion, so by Theorem 5.2 it is an H-invariant flat. Moreover, by the construction
v ∈ Im f̃ , so by Step 2 there is a G-invariant flat passing through v, what completes the
proof of the inclusion Min(G) ⊂ Th(F ).

Step 5: G is a free abelian group of rank 2.

Assume G ∼= Zn for n > 2. Let H < G be a subgroup isomorphic to Z2. We have
already proved that Min(H) = Th(F ) for an H-invariant flat F ⊂ X. Since every g ∈ G
centralizes H, it preserves Min(H), so the thickening Th(F ) is G-invariant. Since G is
torsion-free, the retraction r : Th(F ) → F ∼= E2

4 defined in Theorem 5.4 induces a free
action of G on E2

4 (Corollary 5.5). However, there are no free actions of Zn on E2
4 for

n > 2.

Corollary 6.2. Let a group G act simplicially and properly discontinuously on a uniformly
locally finite systolic complex X.

(1) If G is a virtually abelian group of rank 2, then there is a flat F , unique up to flat
equivalence, such that Th(F ) is G-invariant.
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(2) If H < G is a maximal virtually abelian rank 2 subgroup, then there is a flat F ,
unique up to flat equivalence, such that StabG(Th(F )) = H.

Proof: There is a finite index subgroup A < G isomorphic to Z2 and a finite index
normal subgroup N < G isomorphic to Z2 (we can put N =

⋂
g∈G

g−1Ag). By the Flat

Torus Theorem there is an N -invariant flat F in X, unique up to flat equivalence. Let
g1, . . . , gk be representants of all cosets of N in G. For 1 ≤ i ≤ k flats Fi = gi(F ) are
N -invariant (as g−1

i Ngi = N), so by the Flat Torus Theorem they are equivalent to F .
Thus G stabilizes the thickening Th(F ), what proves (1).

To prove (2) consider the H-invariant thickening Th(F ). By Corollary 5.5 the in-
duced action of StabG(Th(F )) on F ∼= E2

4 is properly discontinuous and as the stabi-
lizer StabG(Th(F )) contains a subgroup isomorphic to Z2 it is also cocompact. Thus
StabG(Th(F ) is a virtually abelian rank 2 group and (2) follows from maximality of H.
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[JS2] T. Januszkiewicz, J. Świa‘tkowski, Filling invariants in systolic complexes and
groups, Geometry&Topology, 11 (2007), pp. 727–758.

[P] P. Przytycki, Systolic groups acting on complexes with no flats are hyperbolic, Fun-
damenta Mathematicae 193 (2007), pp. 277–283.

[Sp] E. Spanier, Algebraic Topology, Springer-Verlag, New York, 1966.

32


