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Abstract

We prove that ideal boundary of a 7-systolic group is strongly hereditarily
aspherical. For some class of 7-systolic groups we show their boundaries are
connected and without local cut points, thus getting some results concerning
splittings of those groups.

1 Introduction

The notion of k-systolic (k ≥ 6 being a natural number) complexes was introduced
by T. Januszkiewicz and J. Świa̧tkowski [JS1] and, independently, by F. Haglund
[H] as combinatorial analogue of nonpositively curved spaces. Those complexes are
simply connected simplicial complexes satisfying some combinatorial local condi-
tions. Roughly speaking there is a lower bound for the length of “essential” closed
paths in a one-skeleton of every link.

A group acting geometrically by automorphisms on a k-systolic complex is
called a k-systolic group. Examples of such torsion free groups of arbitrary large
cohomological dimension are constructed by Januszkiewicz and Świa̧tkowski [JS1],
for every k ≥ 6. Those examples are fundamental groups of some simplices
of groups. In the same paper it is proved that 7-systolic groups are Gromov-
hyperbolic.

In this paper we study 7-systolic complexes and groups and in particular their
ideal boundaries. Our main result is the following.

Theorem 1 (Theorem 4.2 in Section 4) The ideal boundary of a 7-systolic
group is a strongly hereditarily aspherical compactum.
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The notion of the strong hereditary asphericity (see Section 2.3 for the precise
definition) was introduced by R. J. Daverman [Da]. Roughly speaking a space is
hereditarily aspherical if each of its closed subsets is aspherical. The significance
of this notion follows from the fact that a cell-like map defined on a strongly
hereditarily aspherical compactum does not raise dimension.

Theorem 1 shows that 7-systolic groups are quite different from many classical
hyperbolic groups. It gives also new examples of topological spaces that can occur
as boundaries of hyperbolic groups. The question about the spaces being such
boundaries is well understood only in dimensions 0 and 1—compare Kapovich
and Kleiner [KaKl]. It is still not known which topological spaces can be higher
dimensional boundaries of hyperbolic groups and only few homeomorphism types
of such spaces are known—see Benakli and Kapovich [BeK] and discussion in p.
1) of Remarks in Section 4. Moreover, we show (see below) that for certain classes
of complexes (and groups) their ideal boundaries are “simple” in a sense—they
are connected and have no local cut points.

In order to prove the main theorem we define (in Section 3) an inverse system
of combinatorial spheres in a 7-systolic complex and projections onto them, whose
inverse limit is the ideal boundary of the complex. It should be noticed that even
in the more general systolic (which means 6-systolic) case some inverse system like
that can be defined (cf. Januszkiewicz and Świa̧tkowski [JS1, Section 8]). However
its properties do not allow to consider it as a right tool to define a reasonable
boundary of a systolic complex or group. In particular the inverse limit of this
standard systolic inverse system in a 7-systolic case is not the Gromov boundary.
On the other hand, our construction is not valid in general systolic case, although
some results are probably true for hyperbolic systolic (not necessarily 7-systolic)
groups.

In Section 5 we study further properties of boundaries of some 7-systolic com-
plexes. In particular we prove the following theorem, which is a special case of
Theorem 5.6 proved in that section.

Theorem 2 (Corollary 5.7 in Section 5) Let X be a locally finite 7-systolic
normal pseudomanifold of dimension at least 3. Then its ideal boundary ∂X is
connected and has no local cut points.

Via the results of Stallings [St] and the ones of Bowditch [Bow] the latter
theorem implies the following.

Theorem 3 (Corollary 5.9 in Section 5) A group acting geometrically by au-
tomorphisms on a locally finite 7-systolic normal pseudomanifold of dimension
at least 3 does not split essentially, as an amalgamated product or as an HNN -
extension, over a finite nor two-ended group.

Groups acting geometrically on such pseudomanifolds of arbitrary large di-
mension were constructed in Januszkiewicz and Świa̧tkowski [JS1] and are the
only 7-systolic groups of cohomological dimension greater than 2 known to us at
the moment.
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2 Preliminaries

2.1 Simplicial complexes

In this section we recall some definitions and fix the notation.
Let X be a simplicial complex. We denote by X ′ the first barycentric sub-

division of X. For a natural number k, we denote by X(k) the k-skeleton of X,
i.e. the union of all simplices of X, of dimension at most k. For a given subset
C = {v1, v2, ..., vl} of X(0) we denote by < v1, v2, ..., vl > the minimal simplex in
X containing C—the simplex spanned by C. We denote by Xσ the link of a given
simplex σ in X. A simplicial complex X is flag if every set B of pairwise connected
(by edges) vertices of X spans a simplex in X.

Recall that a subcomplex Y of X is full if every set B of vertices of Y spanning
a simplex of X spans a simplex in Y . We denote by σ ∗ ρ the join of simplices σ
and ρ.

If it is not stated otherwise a simplicial complex X is equipped with a path
metric dX for which every k-simplex of X is isometric to the regular Euclidean
k-simplex.

A simplicial complex X is called a chamber complex of dimension n if it is
the union of n-simplices (which are called chambers of X) and for every (n − 1)-
dimensional face of X there exist at least two chambers containing that face. It
is easy to see that links in a chamber complex are themselves chamber complexes.
A gallery in a chamber complex is a finite sequence of maximal simplices such
that two consecutive simplices share a common face of codimension 1. A chamber
complex is said to be gallery connected if any two chambers can be connected by
a gallery. Chamber complex is normal if it is gallery connected and all its links of
dimension above 0 are gallery connected. A chamber complex is a pseudomanifold
if every codimension one face belongs to exactly two chambers.

2.2 Systolic complexes and groups

We follow here Januszkiewicz and Świa̧tkowski [JS1], [JS2]. For a given natural
number k ≥ 4, a simplicial complex X is k-large if it is flag and every cycle γ
in X (i.e. a subcomplex homeomorphic to the circle) of length 4 ≤ |γ| < k has
a diagonal (i.e. an edge connecting two nonconsecutive vertices in γ). Here |γ|
denotes the number of edges of γ.
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A simplicial complex X is locally k-large if for every simplex σ 6= ∅ of X its
link Xσ in X is k-large.

X is k-systolic if it is locally k-large, connected and simply connected.
Because k = 6 is of special importance in that theory, 6-systolic complexes are

called systolic.
A group acting geometrically (i.e. properly discontinuously and cocompactly)

by simplicial automorphisms on a k-systolic (resp. systolic) complex is called
k-systolic (resp. systolic). Free groups and fundamental groups of surfaces are
systolic groups. In Januszkiewicz and Świa̧tkowski [JS1], for arbitrary k and n, a
torsion free k-systolic group of cohomological dimension n is constructed. Those
groups are the fundamental groups of some simplices of groups.

In the rest of this subsection we list some results concerning systolic complexes
and groups. We begin with the easy facts whose proofs can be found in [JS1].

Proposition 2.1 1. If k > m and X is k-large then X is also m-large.

2. A full subcomplex in a (locally) k-large complex is (locally) k-large.

3. Links of a k-large complex are k-large.

4. There is no k-large triangulation of the 2-sphere for k ≥ 6. Hence no trian-
gulation of a manifold of dimension above 2 is 6-large since 2-spheres occur
as links of some simplices in that case.

The following property of 7-systolic complexes is crucial for this paper.

Theorem 2.2 [JS1, Theorem 2.1] Let X be a 7-systolic complex. Then the 1-
skeleton of X with its standard geodesic metric is δ-hyperbolic with δ = 2 1

2 .

Thus 7-systolic groups are word-hyperbolic.
In [JS1, Sections 3 and 7] the notion of a convex subcomplex of a systolic

complex is introduced. A simplex is a convex subcomplex.
For a simplicial complex X and its subcomplex Q we can define a closed com-

binatorial ball of radius i around Q in X, Bi(Q, X), inductively: B0(Q,X) = Q
and Bi(Q,X) =

⋃
{τ : τ ∩Bi−1(Q,X) 6= ∅}, for every positive natural number i.

By Si(Q,X) we denote the subcomplex of Bi(Q,X) spanned by the vertices at

combinatorial distance i from Q, i.e. not belonging to Bi−1(Q,X). By
◦

Bi (Q,X)
we denote the interior of the closed combinatorial i-ball around σ in X, i.e.
◦

Bi (Q, X) = Bi(Q,X) \ Si(Q,X).
For the rest of this section let X denote a systolic complex and Q its convex

subcomplex.

Lemma 2.3 [JS1, Lemmas 7.5 and 7.6] The sphere Si(Q,X) and the ball Bi(Q,X)
are full subcomplexes of X and they are k-large.

Lemma 2.4 [JS1, Sect. 7] If i > 0, then for every simplex τ ∈ Si(Q,X), ρ =
∂Bi−1(Q,X) ∩Xτ is a single simplex and Xτ ∩ Bi(Q,X) = B1(ρ,Xτ ) and Xτ ∩
Si(Q,X) = S1(ρ,Xτ ).
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In the rest of the paper we call the simplex ρ, as in the above lemma the
projection of τ on Si−1(Q, X).

The universal cover of a connected locally 6-large simplicial complex is systolic
and the folowing fact holds.

Theorem 2.5 [JS1, Theorem 4.1] The universal cover of a finite dimensional
connected locally 6-large simplicial complex is contractible.

The proof of this theorem uses the projections onto closed combinatorial balls
(compare [JS1, Section 8]). Restrictions of those projections to spheres

πBi(Q,X)|Si+1(Q,X): Si+1(Q, X) → Si(Q,X)

have some properties that do not allow us to use them in order to define a rea-
sonable boundary of a systolic complex. Thus in Section 3 we define, only for
7-systolic complexes, other maps between spheres.

Lemma 2.6 Let k ≥ 6, let Y be a k-large simplicial complex and let σ be a
simplex of X. If p : X → Y is the universal cover of Y and m < k−1

2 then for
i = 0, 1, 2, ...,m the map p|Bi(σ,X) : Bi(σ,X) → p(Bi(σ,X)) is an isomorphism.

Here we recall two results concerning systolic chamber complexes.

Lemma 2.7 [O, Lemma 4.1] Let X be a systolic chamber complex of dimension
n ≥ 1 and τ its simplex. Then Sk(τ,X) is an (n−1)-dimensional chamber complex,
for every k ≥ 1.

Lemma 2.8 [O, Lemma 4.2] Let X be a systolic chamber complex of dimension
n ≥ 1 and τ its simplex. Let σ be an (n − 1)-dimensional simplex of Sk. Then
there exists a vertex v at a distance k + 1 from τ such that v ∗σ is a simplex of X.

2.3 Strongly hereditarily aspherical compacta

The notion of strongly hereditarily aspherical compacta was introduced by R. J.
Daverman [Da]. A compact metric space Z is strongly hereditarily aspherical if
it can be embedded in the Hilbert cube Q in such a way that for each ε > 0
there exists an ε-covering U of Z by open subsets of Q, where the union of any
subcollection of elements of U is aspherical.

To show, in Section 4, that the boundaries of 7-systolic groups are strongly
hereditarily aspherical, we will use the following result.

Proposition 2.9 [Da, Proposition 1] Suppose {Li, µi} is an inverse sequence of
finite polyhedra and PL maps, and suppose each Li is endowed with a fixed trian-
gulation Ti such that

1. µ−1
i (each subcomplex of Li) is aspherical, and

2. there exists a sequence (ak)∞k=1 of positive numbers, such that limk→∞ak = 0,
and diam(µi−k ◦ ... ◦ µi−1(σ)) < ak, for every simplex σ ∈ Ti.
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Then the inverse limit Z = inv lim {Li, µi} is strongly hereditarily aspherical.

It should be noticed that, by Daverman and Dranishnikov [DaDr, Theorem
2.10], every strongly hereditarily aspherical compactum can be expressed as an
inverse limit like the one above.

3 7-systolic complexes

In this section we study some properties of 7-systolic complexes. In particular
we define and examine other (then in the general systolic case) contractions on
spheres. This is crucial for Section 4. Then we study the properties of some
7-systolic chamber complexes. Those results are important for Section 5.

Let X be a 7-systolic complex of dimension n < ∞. Let Q be its convex
subcomplex (see [JS1, Sections 3 and 7] and compare Section 2.2 above). For a
natural number k, we denote by Sk the combinatorial sphere Sk(Q,X) (compare
Section 2.2 above) and we denote by Bk the closed ball Bk(Q,X).

Define a map πQ,k: S(0)
k → (S′k−1)(0) by putting πQ,k(w) = bτ , for every vertex

w of Sk, where τ = Xw ∩Bk−1 is the projection of w on Sk−1 and bτ ∈ (S′k−1)(0)

is the barycenter of τ .

Lemma 3.1 Let v1 and v2 be two vertices in Sk belonging to the same simplex.
Then πQ,k(v1) and πQ,k(v2) belong to the same simplex of S′k−1.

Proof: Let τ = X<v1,v2>∩Bk−1 and τi = Xvi
∩Bk−1, for i = 1, 2. Then τ ⊂ τ1∩τ2.

It is enough to show that τ1 ⊂ τ2 or τ2 ⊂ τ1.
We will show this arguing by contradiction. Suppose it is not true, i.e. there

exist vertices wi such that wi ∈ τi \ τj for {i, j} = {1, 2}. Let for i = 1, 2, ti be
vertex belonging to (Xwi ∩Bk−2) ∩ (Xτ ) ∩Bk−2).

Let us examine the closed path (v1, w1, t1, t2, w2, v2, v1) in X(1).
There are no diagonals of the form < vi, tj > since the distance between vi and

tj is at least 2, i, j = 1, 2.
There are no diagonals of the form < vi, wj >, i 6= j. Since if, e.g. < v1, w2 >

is an edge in X then w2 ∈ Xv1 ∩Bk−1 = τ1.
There is no diagonal < w1, w2 >. If it exists, then the path (v1, w1, w2, v2, v1)

is a closed simple path without diagonals of length 4 which contradicts 7-largeness
of X.

Hence the path (v1, w1, t1, t2, w2, v2, v1) is a closed path of length at most six
without diagonals. This contradicts 7-largeness of X. �

Using the above lemma we can extend πQ,k simplicially.

Definition 3.2 Define, for a natural number k, a contiunous map between com-
binatorial spheres

πQ,k: Sk(Q,X) → (Sk−1(Q, X))′,

given by a simplicial extension of the map

πQ,k: Sk(Q,X)(0) → (Sk−1(Q,X)′)(0).
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Lemma 3.3 There exists a constant C < 1, depending only on n = dim(X) such
that for every k, l ∈ {1, 2, 3, ...} with l < k and for every two points x, y ∈ Sk one
has dSk−l−1(πQ,k−l◦...◦πQ,k−1◦πQ,k(x), πQ,k−l◦...◦πQ,k−1◦πQ,k(y)) ≤ CldSk

(x, y).

Proof: Let D be the distance from a vertex to an opposite codimension one face
in the regular n-simplex. Let E be the diameter of a maximal simplex in the
barycentric subdivision of the regular n-simplex. Then for C = E

D < 1 the lemma
holds. �

Lemma 3.4 For every subcomplex L of Sk−1 the subcomplex π−1
Q,k(L) of Sk is

aspherical.

Proof: We will show that π−1
Q,k(L) is a full subcomplex of Sk. Hence, by Proposition

2.1 , as a full subcomplex of 6-large complex it is 6-large and thus aspherical, by
Theorem 2.5.

Let vertices v1, v2, ..., vl ∈ (π−1
Q,k(L))(0) span a simplex in Sk. Then, by Lemma

3.1, πQ,k(v1), ..., πQ,k(vl) are vertices of a simplex of S′k−1 and they correspond to
a chain of simplices τ1, ..., τl of Sk−1. One of them, say τ1 is the least dimensional
simplex among them and hence it is contained in all the simplices τ2, ..., τl. This
means that π−1

Q,k(τ1) ⊂ π−1
Q,k(L) contains all points v1, ..., vl and hence simplex

spanned by them. �

In the rest of this section we study some 7-large chamber complexes.
For a 7-large chamber complex X we define, for a vertex v of X, a condition

R(v,X) that will be crucial for Section 5 (compare the condition R(v,X) defined
in [O, Section 4]):

R(v,X) iff (∀ σ ∈ Xv (Xv \
◦

B2(σ,Xv) and Xv \
◦

B3(σ,Xv) are connected))

The next lemma is an analogue of [O, Lemma 4.7], for 7-large complexes.

Lemma 3.5 Let X be a 7-large chamber complex such that the link Xκ is con-

nected, for every simplex κ of X of codimension greater than one, and Xσ\
◦

Bi

(ρ,Xσ), i = 2, 3 is connected for every codimension two simplex σ of X and every
simplex ρ of its link Xσ. Then for every vertex v of X condition R(v,X) holds.

Proof: We will proceed by induction on n = dim(X).
For n = 2 the assertion is clear since codimension two simplexes are just

vertices.
Assume we proved the lemma for n ≤ k. Let dim(X) = k + 1. Take a vertex v

of X and consider its link Xv. It has dimension k. Moreover for every codimension
l simplex σ of Xv the simplex σ ∗ v is of codimension l in X and Xσ∗v = (Xv)σ.
Thus Xv satisfies hypotheses of the lemma. Hence by the induction assumptions,
for every vertex w of Xv condition R(w,Xv) holds.

Xv is 7-large as a full subcomplex of X (Proposition 2.1). Thus the universal
cover X̃v of Xv is 7-systolic. Let p : X̃v → Xv be a covering map.
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Take a simplex ω of Xv. Let κ be a simplex of X̃v such that p(κ) = ω.
Since ∂κ = S0(κ, X̃v) is connected we have, by [O, Lemma 4.5] (or by Corollary
5.4 below), that S1(κ, X̃v), S2(κ, X̃v) and S3(κ, X̃v) are connected. By Lemma
2.6, p′ = p|

B2(κ,X̃v)
: B2(κ, X̃v) → B2(ω, Xv) is an isomorphism. Observe that

p(B3(κ, X̃v)) ⊂ B3(ω, Xv). We want to show that p(B3(κ, X̃v)) = B3(ω, Xv).
Let z be a vertex in B3(ω, Xv) \ B2(ω, Xv) and let u ∈ B2(ω, Xv) be a vertex
connected by an edge with z. Then, by Lemma 2.6, p′′ = p|

B1((p′)−1(u),X̃v)
:

B1((p′)−1(u), X̃v) → B1(u, Xv) is an isomorphism and (p′′)−1(z) ∈ B3(κ, X̃v).
Hence z ∈ p(B3(κ, X̃v)) and p(B3(κ, X̃v)) = B3(ω, Xv). Now we claim that
S3(ω, Xv) = p(S3(κ, X̃v)) and hence is connected. Observe that S3(ω, Xv) ⊂
p(S3(κ, X̃v)). Suppose S3(ω, Xv) 6= p(S3(κ, X̃v)). Let w1 ∈ S3(κ, X̃v) be a vertex
such that p(w1) ∈ B2(ω, Xv). The vertex w2 = (p′)−1(p(w1)) belongs to B2(κ, X̃v)
and p(w1) = p(w2). But then d

X̃v

(1)(w1, w2) < 7 and we can find homotopically
non-trivial closed path of length less than 7 in Xv. This contradicts 7-largeness of
Xv, by [JS1, Corollary 1.5]. Thus we have shown that S3(ω, Xv) = p(S3(κ, X̃v))
is connected.

Take two vertices t and s of Xv\
◦

B2 (ω, Xv) (or of Xv\
◦

B3 (ω, Xv)). Since,
by assumptions, Xv is connected there exists a path in (Xv)(1) joining them.

If this path misses
◦

B2 (ω, Xv) (respectively
◦

B3 (ω, Xv)) it joins these vertices

in Xv\
◦

B2 (ω, Xv) (respectively in Xv\
◦

B3 (ω, Xv)). If not we can replace it,
by connectedness of S2(ω, Xv) (respectively S3(ω, Xv)), by a path intersecting

S2(ω, Xv) (respectively S3(ω, Xv)) and also lying in Xv\
◦

B2 (ω, Xv) (respectively

in Xv\
◦

B3 (ω, Xv)). Hence one gets the conclusion. �

Corollary 3.6 Let X be a normal 7-systolic pseudomanifold. Then condition
R(v,X) holds for every vertex v of X.

Proof: One dimensional link in a normal pseudomanifold is a circle. Hence it
satisfies assumptions of the preceding corollary. �

4 Gromov boundary

The aim of this section is to prove that the ideal boundary of a 7-systolic group
(such groups are word hyperbolic by Theorem 2.2) is a strongly hereditarily as-
pherical compactum. To prove this we first show that such a boundary can be
described as an inverse limit of combinatorial spheres in the complex on which the
group acts geometrically.

Throughout this section X denotes a locally finite 7-systolic complex of dimen-
sion n < ∞. We fix a vertex v of X. For a natural number k, we denote by Sk
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the combinatorial sphere Sk(v,X) and we denote by Bk the closed ball Bk(v,X).
We denote by πk the projection π{v},k: Sk → Sk−1 (see Section 3).

Lemma 4.1 δX = inv lim {Sk, πk} is homeomorphic to ∂X–the Gromov bound-
ary of X.

Proof: We use the set of equivalence classes of geodesic rays in X(1) propagating
from a given vertex v, as a definition of the Gromov boundary of X—for details
see e.g. Bridson and Haefliger [BrH, Chapter III.3].

Compactness of both δX and ∂X follows from the fact that the balls in X(0)

are finite.
First, we construct a bijection F : δX → ∂X. Let x = (v, x1, x2, ...) ∈ δX.

Note that xk ∈ Sk for k = 1, 2, .... For arbitrary k, choose a maximal simplex σk

of Sk containing xk. If we take a vertex u of σk then Xσk
∩ Bk−1 ⊂ Xu ∩ Bk−1

and hence there exists a vertex w of σk−1 connected by an edge with u. Hence
for any k we can construct a sequence (v = vk

0 , vk
1 , vk

2 , ..., vk
k) of vertices of X such

that vk
i ∈ σi and vi−1

k is connected by an edge with vi
k for i = 1, 2, ..., k. Since a

path ck = (vk
0 , ..., vk

k) in X(1) has length k and joins v and vk
k lying at a distance

k it is a geodesic segment starting at v. Since the balls in X(0) are finite, we can,
by the diagonal argument, extract from (ck)∞k=1 a geodesic ray c = (v, v1, v2, ...),
such that vk is a vertex of σk, for every k = 1, 2, 3, .... The equivalence class of c
within ∂X is by definition F (x). Observe that it is independent of choosing c as
above, since all of them lie at distance at most one from the sequence x.

We show now that F is injective. Let x = (v, x1, x2, ...) and y = (v, y1, y2, ...) be
two elements of δX with F (x) = F (y). Let the geodesic rays c = (v, v1, v2, ...) and
d = (v, w1, w2, ...) in X(1) representing, respectively, F (x) and F (y) be constructed
as above. Then there exists a constant D > 0 such that for every k = 1, 2, 3, ... we
have dSk

(vk, wk) ≤ D. Fix k. It is enough to show that dSk
(xk, yk) ≤ ε for every

ε > 0. Choose ε > 0. Take l ∈ N such that l ≥ logC
ε

D+2 , where C < 1 is the
constant of Lemma 3.3. By construction dSk+l

(xk+l, yk+l) ≤ D + 2 and thus by
Lemma 3.3

dSk
(xk, yk) =

= dSk
(πk+1 ◦ ... ◦ πk+l−1 ◦ πk+l(xk+l), πk+1 ◦ ... ◦ πk+l−1 ◦ πk+l(yk+l)) ≤

≤ CldSk+l
(xk+l, yk+l) ≤ ε.

Now we show F is onto. Take a geodesic ray c = (v, v1, v2, ...), vi ∈ X(0). Ob-
serve that vk ∈ Sk for k = 2, 3, 4, .... Consider a sequence (π2◦π3◦...◦πk(vk))∞k=2 of
points in S1. By compactness of spheres there is a subsequence (va1(1), va1(2), ...) of
the sequence (v2, v3, ...) such that (π2◦π3◦...◦πa1(k)(va1(k))∞k=2 converges. Let x1 ∈
S1 be the limit of this subsequence. Now given a subsequence (of (v, v1, v2, ...))
(val(1), val(2), ...), l > 1 we find a subsequence (val+1(1), val+1(2), ...), al+1(i) > l such
that (πl+1 ◦ πl+2 ◦ ... ◦ πal+1(k)(val+1(k))∞k=l+1 tends to xl ∈ Sl. By construction
πk(xk) = xk−1, for k > 1 and π1(x1) = v. Hence x = (v, x1, x2, ...) ∈ δX. More-
over since vk and vk+1 belong to a common simplex for every k = 2, 3, 4... we get, by
definition of πk, that d(vk, πk+1(vk+1)) ≤ C where C is the constant from Lemma
3.3. Then for every natural number l we have d(vk, πk+1 ◦πk+2 ◦ ...◦πk+l(vk+l)) ≤
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∑∞
i=1 Ci < ∞. Thus d(vk, xk) <

∑∞
i=1 Ci < ∞, that implies c represents the

equivalence class of F (x).
Finally we argue F is continuous and hence as a continuous bijection defined

on a compact space it is a homeomorphism.
Given x = (v, x1, x2, ...) ∈ δX and a sequence (xi)∞i=1 ⊂ δX, xi = (v, xi

1, ...)
converging to x, fix geodesic rays c = (v, v1, v2, ...) and ci = (v, vi

1, v
i
2, ...), i =

1, 2, 3, ... representing, respectively, F (x) and F (xi), i = 1, 2, 3, ..., and constructed
as when we defined F . To prove F is continuous at x it is enough to show that for
every natural number N there exists M > 0 such that for every natural number i >
M we have dSN

(vN , vi
N ) < 3. By definition of the topology of an inverse limit there

exists M > 0 such that for every natural number i > M one has dSN
(xN , xi

N ) < 1
and hence dSN

(vN , vi
N ) ≤ dSN

(vN , xN ) + dSN
(xN , xi

N ) + dSN
(xN , vi

N ) < 3. �

We now state and prove the following main theorem.

Theorem 4.2 The ideal boundary of a 7-systolic group is a strongly hereditarily
aspherical compactum.

Proof: A 7-systolic group G acts, by definition, geometrically on a locally finite
7-systolic complex X of finite dimension. Then the ideal boundary ∂G of G is
homeomorphic to ∂X.

We apply Proposition 2.9 to the inverse system {Li, µi} = {Si, πi+1}. By
Lemma 3.4 the condition 1) of Proposition 2.9 is fulfilled, and by Lemma 3.3 we
get condition 2) of the proposition. Hence ∂G = ∂X = δX = inv lim {Si, πi+1} is
a strongly hereditarily aspherical compactum. �

Remarks. 1) A simple argument shows that every compact metrizable
space can be homeomorphic to the ideal boundary of some hyperbolic space (even
more—of some CAT (−1) space). The question of which topological spaces can
occur as boundaries of hyperbolic groups (compare Benakli and Kapovich [BeK,
Chapter 17]) is more difficult. It is answered somehow only in dimensions (of
the boundary) 0 and 1 (cf. Kapovich and Kleiner [KaKl]). For higher dimen-
sions the following homeomorphism types of the boundaries of hyperbolic groups
were known: spheres, Pontryagin surfaces Πp for p being a prime number, two-
dimensional universal Menger compactum µ5

2 (compare [BeK, Chapter 17]), three-
dimensional universal Menger compactum µ7

3 (cf. Dymara and Osajda [DyO]),
Pontryagin spheres and three-dimensional trees of manifolds (cf. Przytycki and
Świa̧tkowski[PS]).

By Theorem 2.2, 7-systolic groups are hyperbolic and, by [JS1, Corollary 19.3],
for each natural number n, there exists a hyperbolic group of cohomological di-
mension n. Hence, by Theorem 4.2 above, and by Bestvina and Mess [BesM,
Corollary 1.4], strongly hereditarily aspherical compacta of all dimensions can
occur as boundaries of hyperbolic groups.

Moreover, in [JS1] examples of 7-systolic groups acting on pseudomanifolds of
arbitrary large dimension are constructed. Thus, by Corollaries 5.7 and 5.9, those
group are, in a sense, indecomposable and their boundaries are connected, locally
connected and without local cut points (compare Section 5).
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2) Pawe l Zawíslak has shown (private communication) that the boundary of
a 7-systolic orientable normal pseudomanifold of dimension 3 is the Pontryagin
sphere (cf. Jakobsche [Jak]). Such pseudomanifolds are constructed in [JS1].

The Pontryagin sphere is the inverse limit of an inverse system {Xi, pi}∞i=1

defined as follows. Let X1 = S2 be a triangulated two-sphere. Let T be a given
triangulation of the two torus. Assume Xi, pj are defined for i ≤ k and j ≤ k− 1.
Let Xk be a surface and Tk its triangulation. Xk+1 is a connected sum of Xk and
a set of disjoint tori Tσ–one for every 2-simplex σ of Tk–carrying the triangulation
T . Every Tσ is glued to Xk by identifying ∂σ and the boundary of some 2-simplex
σ′ of triangulation of Tσ. Then Xk+1 carries an induced triangulation and we
define a triangulation Tk+1 of Xk+1 as a subdivision of this natural triangulation.
The map pk: Xk+1 → Xk is defined by the conditions: pk(Tσ \ σ′) = int σ and
pk|∂σ = Id∂σ for every 2-simplex σ of Tk.

3) For a polytopal complex Y its face complex Φ(Y ) is a simplicial complex
defined as follows. The vertex set of Φ(Y ) is the set of cells of Y and the vertices of
Φ(Y ) span a simplex if the cells of Y corresponding to those vertices are contained
in a common cell of Y . It can be shown (compare [JS3]) that if Y is a simply
connected simple (i.e. all links are simplicial complexes) polytopal complex with
7-large links then Φ(Y ) is 7-systolic. Thus the ideal boundary of such a complex
Y is strongly hereditarily aspherical. Question.

Is the ideal boundary of a hyperbolic systolic group strongly hereditarily as-
pherical ?

5 Splittings

The aim of this section is to study further properties of boundaries of 7-systolic
complexes in some special cases. As a consequence we get results concerning
splittings of groups acting on such complexes.

Throughout this section X denotes a locally finite 7-systolic complex of dimen-
sion n < ∞. We fix a vertex v of X. For a natural number k, we denote by Sk

the combinatorial sphere Sk(v,X) and we denote by Bk the closed ball Bk(v,X).
We denote by πk the projection π{v},k: Sk → Sk−1 (see Section 3).

Lemma 5.1 Let Y be a 7-large n-dimensional chamber complex, σ one of its
simplices and τ an n − 1-simplex of S2(σ, Y ). Then there exists a vertex v ∈
Y \B2(σ, Y ) such that v ∗ τ is a simplex of Y .

Proof: By Lemma 2.8, if we consider the universal cover p : Ỹ → Y and σ̃ ∈ p−1(σ),
τ̃ ∈ p−1(τ)∩S2(σ̃, Ỹ ), then there exists a vertex ṽ of Ỹ such that ṽ ∈ Ỹ \B2(σ̃, Ỹ )
and ṽ ∗ τ̃ is a simplex of Ỹ . Consider v = p(ṽ). Clearly v ∗ τ is a simplex of Y .

Assume v ∈ B2(σ, Y ). Then there exists a simplex σ̃1 ∈ p−1(σ) distinct from
σ̃ such that ṽ ∈ B2(σ̃1, Ỹ ). Since ṽ ∈ B3(σ̃, Ỹ ) we can then choose vertices s ∈ σ̃
and t ∈ σ̃1 with p(s) = p(t) and a path of length at most 6 joining s and t. But
this contradicts 7-largeness of Y . Thus v ∈ Y \B2(σ, Y ). �
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Lemma 5.2 The map πk: Sk → Sk−1 is onto.

Proof: Let z be a given point in Sk−1. We will show that there exists a point
w ∈ Sk satisfying πk(w) = z.

Case 1: z is a barycenter of a simplex τ of Sk−1.
If dim(τ) = n − 1 then by Lemma 2.8 there exists a vertex w ∈ Sk such that

w ∗ τ is a simplex of X and hence πk(w) = z.
Now, let dim(τ) = m < n − 1. Since, by Lemma 2.7, Sk−1 is a chamber

complex of dimension n − 1, there exists an n − 1-simplex ρ of Sk−1 containing
τ . Then, again by Lemma 2.8, there exists a vertex w′ ∈ Sk spanning a simplex
with ρ. Clearly w′ ∈ Sk ∩ S2(Xτ , δ), where δ = Xτ ∩ Sk−2. Hence Xτ is a 7-large
(n −m − 1)-dimensional chamber complex and, (again by Lemma 2.7) S2(Xτ , δ)
is an (n − m − 2)-dimensional chamber complex (nonempty), we get, by Lemma
5.1, that there exists a vertex w ∈ Xτ \B2(Xτ , δ). But then πk(w) = z.

Case 2: z belongs to an interior of an m-simplex τ of S′k−1.
Then τ =< a0, a1, ..., am > where ai is a barycenter of an i-simplex τi of

Sk−1. By Case 1 there exists a vertex a′m ∈ Sk such that πk(a′m) = am. Then
a′m ∈ S2(Xτm−1 ∩ Bk−2, Xτm−1) and, using Lemma 5.1 for Xτm−1 , there ex-
ists a vertex a′m−1 ∈ Xτm−1 \ B2(Xτm−1 ∩Bk−2, Xτm−1) connected to a′m by
an edge. Note that πk(a′m−1) = am−1 and that < a′m, a′m−1 >⊂ S2(Xτm−2 ∩
Bk−2, Xτm−2). Assume we found vertices a′m, a′m−1, ..., a

′
l, l > 0 spanning a simplex

in S2(Xτl−1∩Bk−2, Xτl−1), such that πk(a′i) = ai. Then we can find a vertex a′l−1 ∈
Xτl−1\B2(Xτl−1 ∩Bk−2, Xτl−1) spanning together with < a′m, a′m−1, ..., a

′
l > a sim-

plex in X. Hence wee can find points a′m, a′m−1, ..., a
′
0 ∈ Sk spanning a simplex

in X and satisfying πk(a′i) = ai. Then if z =
∑m

i=0 λiai for λi > 0 such that∑m
i=0 λi = 1, we have πk(

∑m
i=0 λia

′
i) = z. �

Lemma 5.3 Let the condition R(w,X) hold for every vertex w of X. Then π−1
k (τ)

is connected for every simplex τ ⊂ Sk−1 and for every k ≥ 2.

Proof: If τ is a vertex then its preimage by the map πk: Sk → Sk−1, π−1
k (τ) =

span {vertices in Xτ \B2(Xτ ∩Bk−2, Xτ )} is nonempty, by Lemma 5.2 and it is
connected by R(τ,X).

Then for the general case, by surjectivity of πk (Lemma 5.2), it is enough to
prove the following. Let z be a given vertex of τ and p ∈ Sk be a point such that
πk(p) belongs to a simplex ρ of S′k−1 containing z. Then one can connect p with
π−1

k (z) by a path.
To prove this claim notice that ρ =< z = w0, w1, w2, ..., wm > for some vertices

w1, ..., wm of S′k−1 such that πk(p) =
∑m

i=0 λiwi where λi > 0 and
∑m

i=0 λi = 1.
Then, by Definition 3.2 of πk, there exist vertices v′0, w

′
1, w

′
2, ..., w

′
m spanning a

simplex of Sk such that p =
∑m

i=0 λiw
′
i and πk(w′

i) = wi. �

Corollary 5.4 Let the condition R(w,X) hold X for every vertex w of X. Then
for every k ≥ 2 and for any connected subcomplex K of Sk−1 its preimage π−1

k (K)
is connected.
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Theorem 5.5 Let X be a finitely dimensional locally finite 7-systolic chamber
complex such that the condition R(w,X) holds for every vertex w of X. Then the
ideal boundary ∂X of X is connected.

Proof: Observe that S1 = Xv and thus it is connected by R(v,X). By Corollary
5.4 if Sk−1 is connected then Sk is connected too. Hence ∂X as an inverse limit
of continua is a continuum. �

Theorem 5.6 Let X be a locally finite 7-systolic chamber complex of finite di-
mension n ≥ 3. Assume that the link Xκ is connected, for every simplex κ of X

of codimension greater then one, and Xσ\
◦

Bi (ρ,Xσ), i = 2, 3 is connected for
every codimension two simplex σ of X and every simplex ρ of its link Xσ. Then
the ideal boundary ∂X of X is connected and has no local cut points.

Proof: Connectedness of the boundary follows from Lemma 3.5 and Theorem 5.5.
Now we show there are no local cut points in ∂X. If a point x ∈ ∂X disconnects

an open connected set U ⊂ ∂X then it disconnects every open connected V ⊂ U .
Hence it disconnects every connected subset W whose interior contains x. Thus,
to prove the Lemma, it is enough to show that for a given point x ∈ ∂X and its
open neighbourhood U there exists a connected set W with x ∈ int W ⊂ U such
that W \ {x} is connected.

Let us define, for a natural number k, a map π∞k : ∂X → Sk as a projection
from the inverse limit ∂X to the element Sk of the inverse system {Si, πi}. By the
definition of the topology on ∂X one can find a natural number k large enough so
that if τ is a simplex of Sk containing π∞k (x) then W = (π∞k )−1(B2(τ, Sk)) ⊂ U .
We claim W is as desired.

First observe that (π∞k )−1(
◦

B2 (τ, Sk)) ⊂ W is open and contains x. Moreover
B2(τ, Sk) is a connected subcomplex of Sk and hence, by Corollary 5.4 the inverse
system

{
Wl = π−1

l (B2(τ, Sk), πl|Wl

}∞
l=k+1

consists of continua and its inverse limit
W is a continuum.

Now we show that every two points y, z ∈ W \{x} are connected by a continuum
within W \ {x}. Again by the definition of the topology on ∂X we can find m

big enough such that there exists a vertex w ∈ Sm such that π∞m (x) ∈
◦

B1 (v, Sm)

and y, z /∈
◦

B1 (v, Sm). Since π∞m (W ) = π−1
k+1 ◦ π−1

k+2 ◦ ... ◦ π−1
m (B2(τ, Sk)) is a

connected subcomplex of Sm then, if S1(v, Sm) = (Sm)v is connected, we can find

a continuum K ∈ π∞m (W ) \
◦

B1 (v, Sm) connecting y and z. Then (π∞m )−1(K) is a
continuum (as an inverse limit of continua) in W missing x and containing y and
z.

Thus to finish the proof we have to show that S1(v, Sm) = (Sm)v is connected.
Observe that for every simplex σ of Xv the link of σ in Xv is the link of σ ∗ v in
X. Hence (compare Lemma 3.5 and its proof) the link Xv is a 7-large chamber
complex such that the condition R(z,Xv) holds for every vertex z, provided Xv

has dimension above two. Let ρ = Xv ∩ Sm−1. Then, by Lemma 2.4, we get
S1(v, Sm) = (Sm)v = Xv ∩ Sm = S1(ρ,Xv). Since ∂ρ is connected and balls of
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small radii in 6-large complexes are isomorphic with the ones in its universal covers
(cf. Lemma 2.6) we get, by Corollary 5.4 that S1(ρ,Xv) is connected. �

Corollary 5.7 Let X be a locally finite normal 7-systolic pseudomanifold of finite
dimension at least 3. Then its ideal boundary ∂X is connected and has no local
cut points.

Proof: One-dimensional links in normal manifolds are circles. �

Theorem 5.8 Let G be a group acting geometrically by automorphisms on a 7-
systolic chamber complex X of dimension n ≥ 3. Assume that the link Xκ is

connected, for every simplex κ of X of codimension greater then one, and Xσ\
◦

Bi

(ρ,Xσ), i = 2, 3 is connected for every codimension two simplex σ of X and every
simplex ρ of its link Xσ. Then G does not split essentially, as an amalgamated
product or as an HNN -extension, over a finite nor two-ended group.

Proof: This follows from Theorem 5.6.
By Stallings theorem [St], G does not split over a finite group—compare also

Gromov [G, remarks after Proposition 3.2.A], Coornaert–Delzant–Papadopoulos
[CDP, Exercise 4) in Chapter 2] and Ghys and de la Harpe [GdlH, Proposition 17
in Chapter 7.5].

By Bowditch [Bow, Theorem 6.2], G does not split essentially over a two-ended
group. �

Corollary 5.9 A group acting geometrically by automorphisms on a locally finite
normal 7-systolic pseudomanifold of dimension at least 3 does not split essentially,
as an amalgamated product or as an HNN -extension, over a finite nor two-ended
group.

Remarks. 1) A systolic group acting on a 7-systolic pseudomanifold of
dimension at least 3 can split over a surface group (this remark is due to J.
Świa̧tkowski). To see this take two isomorphic closed 3-dimensional 7-large pseu-
domanifolds with links of vertices being closed surfaces (such spaces exist by
Januszkiewicz and Świa̧tkowski [JS1, Corollary 19.3 p. (1) and its proof]). Con-
sider complement of an open residue of a given vertex in each of them. The link
of the vertex is a convex subcomplex of the complement and hence the union of
both complements along that links is 7-large. Thus the fundamental group of the
sum splits over the fundamental group of a link which is a surface.

2) As noticed in [O, Section 5] most of the examples of systolic groups—except
automorphism groups of complexes of dimension at most two—constructed in [JS1]
as fundamental groups of some extra-tileable simplices of groups satisfy assumtions
of Theorems 5.6 and 5.8.

At the moment the only 7-systolic groups of virtual cohomological dimension
above two known to us are the groups acting on normal 7-systolic pseudomanifolds,
constructed in [JS1].
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Question.
Can groups acting geometrically on normal 7-systolic pseudomanifolds of di-

mension at least 3 split over free non-abelian groups ?
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