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1. Introduction

Systolic complexes were introduced by Tadeusz Januszkiewicz and Jacek Świa‘tkowski
in [JS1] and independently by Frédéric Haglund in [Ha]. They are connected simply con-
nected simplicial complexes, satisfying certain local combinatorial condition (see Definition
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nictwa Wyższego), MNiSW grant N201 012 32/0718 for years 2007–2010.

1



2.1 for details) which is a simplicial analogue of nonpositive curvature. Systolic complexes
have many properties similar to properties of CAT(0)-spaces, however systolicity neither
implies, nor is implied by nonpositive curvature of the complex equipped with piecewise
Euclidean metric for which simplices are regular Euclidean simplices.

In the present paper we study the special class of systolic complexes, analogous to
CAT(0)-spaces with the Isolated Flats Property, studied by G. Christopher Hruska. We
prove simplicial analogs of the results obtained by Hruska in [Hr1], [Hr2] and [Hr3] for
CAT(0)-spaces.

Recall, that a 2-dimensional flat in a systolic complex X is a subcomplex F ⊂ X
isomorphic to a triangulation of a Euclidean plane by congruent equilateral triangles, such
that F (1) ⊂ X(1) is an isometric embedding. By [JS2] there is no systolic triangulation of
En for n > 2 and systolic complexes do not admit properly discontinuous action of Zn for
n > 2, thus one does not need to consider higher dimensional flats. The systolic complex
X satisfies the Isolated Flats Property (IFP) if the diameter of Nc(F ) ∩ Nc(F ′) for flats
F , F ′ at infinite Hausdorff distance is bounded by a constant dependent only on c (if flats
F and F ′ are at finite distance, then by Theorem 3.2 the distance is at most 1).

The first result of the paper is the characterization of systolic complexes with IFP
similar to the one proved by Daniel Wise for 2-dimensional CAT(0)-complexes (see [Hr1]):

Theorem A (see Theorem 5.7 in the text) Let X be a cocompact systolic complex. Then
X satisfies the Isolated Flats Property if and only if it does not contain isometrically
embedded triplanes.

D. Wise defined the triplane as the geodesic space obtained by gluing three half-planes
by isometries along their boundaries. In the systolic case there are three configurations
resembling triplane – they are shown in Figure 5.1.

The second result is the theorem stating that a group acting geometrically on a systolic
complex with IFP is relatively hyperbolic with respect to their maximal virtually abelian
subgroups of rank 2 (as we have mentioned above, such groups do not contain abelian
subgroups of higher rank).

Theorem B (see Corollaries 5.4 and 5.14 in the text) Let X be a systolic complex with the
Isolated Flats Property and G a group acting cocompactly and properly discontinuously
on X. Then:

(1) There is a bijective correspondence between maximal virtually abelian subgroups of
rank 2 in G and equivalence classes of flats in X (two flats are equivalent if they are
at finite Hausdorff distance).

(2) The group G is relatively hyperbolic with respect to a family of its maximal virtually
abelian subgroups of rank 2.

These results are summarized in Theorem 5.17, where we present four equivalent
formulations of the Isolated Flats Property.

One of the results obtained while proving Theorem A is interesting itself, as it presents
a precise description of all possible configurations of two flats in an arbitrary systolic
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complex (we do not assume IFP until Section 5). A flat (the triangulation of a plane
such that every vertex is adjacent to 6 triangles) can be cut into two half-planes such that
boundary vertices at each of them are adjacent to 3 triangles (we call them half-planes of
type 3-3) or such that boundary vertices at each of the half-planes are adjacent alternately
to 2 or 4 triangles (we call them half-planes of type 2-4). The intersections of two flats in
an arbitrary systolic complex are described by the following theorem:

Theorem C (see Theorem 3.13 in the text) Let F1 and F2 be two flats in a systolic
complex X. Choose flats F ′1 and F ′2, at finite Hausdorff distance (the distance is actually
at most 1) from F1 and F2, respectively, such that the intersection F ′1 ∩ F ′2 is maximal.
Then

F ′1 ∩ F ′2 = H1 ∩ . . . ∩Hn

for some collection of half-planes H1, . . . , Hn ⊂ F of type 3-3 or of type 2-4.

2. Systolic complexes and groups

In this section we recall the definition and main properties of systolic complexes and
systolic groups, proved in [JS1] and [JS2].

Let X be a simplicial complex and σ a simplex in X. The link of X at σ, denoted Xσ,
is the subcomplex of X consisting of all simplices that are disjoint from σ and together
with σ span a simplex in X. The residuum Res(σ) is the union of all simplices containing
σ.

A simplicial complex X is flag if every finite set of its vertices pairwise connected by
edges spans a simplex in X. A subcomplex Y ⊂ X is full if any simplex σ ⊂ X with all
vertices in Y is contained in Y .

A cycle in X is a subcomplex γ isomorphic to a triangulation of a circle. The length
of γ (denoted |γ|) is the number of its edges. A diagonal of a cycle is an edge joining its
two nonconsecutive vertices.

Whenever we refer to a metric on a simplicial complex, we actually mean the 1-skeleton
of the complex equipped with the combinatorial metric (i.e. the geodesic metric in which
all edges have length 1). Thus for a simplicial complex X the symbol ‘dX ’ denotes the
combinatorial metric on X(1). Moreover, referring to a geodesic in a simplicial complex
X, we mean a geodesic in X(1) having both endpoints in X(0).

Definition 2.1. (see [JS2]) A simplicial complex X is called:

• 6-large if it is flag and every cycle γ in X of length 4 ≤ |γ| < 6 has a diagonal;

• locally 6-large if link at every (nonempty) simplex in X is 6-large;

• systolic if it is locally 6-large, connected and simply connected.

A group acting simplicially, properly discontinuously and cocompactly on a systolic com-
plex is called a systolic group.
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The definition of systolicity emphasizes the local character of simplicial nonpositive
curvature; however, we obtain an equivalent definition replacing words ‘locally 6-large’
with ‘6-large’ (see the fact below).

Fact 2.2. ([JS1], Proposition 1.4) Every systolic complex is 6-large. In particular, a cycle
of length smaller than 6 in a systolic complex bounds a triangulated disc with no internal
vertices.

Theorem 2.3. Let X be a finite-dimensional systolic complex. Then:

(1) ([JS1], Theorem 4.1) X is contractible.

(2) ([JS2], Corollary 1.3) Every full subcomplex of X is aspherical.

The important tool used in the present paper will be the notion of minimal surfaces.
The existence of minimal surfaces is given by the following proposition (notice that a
minimal surface spanning the given closed path need not be unique). For a more detailed
introduction to minimal surfaces in systolic complexes we refer the reader to [E].

Proposition 2.4. ([E], Lemma 4.2) Let X be a systolic complex and γ a closed path
in X(1). Then there exists a simplicial map S : ∆ → X such that ∆ is a triangulation of
a 2-disc and S|∂∆ coincides with γ. Moreover, if we choose S so that ∆ has the minimal
area, then ∆ is a systolic disc. In the latter case S is called a minimal surface spanning γ.

Systolic complexes are in some sense essentially 2-dimensional (in the sense of the
theorem below). However, there are examples of systolic complexes of arbitrarily large
virtual cohomological dimensions (see [JS1]).

Theorem 2.5. ([JS2], Theorem 8.2; [E], Theorem 2.5) Let X be a systolic complex and
S a triangulation of a 2-sphere. Then any simplicial map f : S → X can be extended to a
simplicial map F : B → X, where B is a triangulation of a 3-ball, such that ∂B = S and
B has no internal vertices.

2.1. Directed geodesics

The 1-skeletons of systolic complexes equipped with the combinatorial metric are not
uniquely geodesic. Moreover, two geodesics with the same endpoints can be far away from
each other (even as far as half of their lengths). To avoid this inconvenience Januszkiewicz
and Świa‘tkowski introduced in [JS1] a subclass of geodesics, called allowable geodesics (see
Definition 2.7) with better properties. An allowable geodesic connecting given two vertices
is not unique, but any two such geodesics are Hausdorff 1-close. Moreover, allowable
geodesics satisfy some variant of the Fellow Traveller Property:

Proposition 2.6. (Fellow Traveller Property) (see [JS1], Proposition 11.2) Let X
be a systolic complex and suppose (ui)n

i=0 and (ti)m
i=0 are allowable geodesics in X from v

to w and from p to q, respectively. Then:

dX(ui, ti) ≤ 3 ·max{dX(v, p), dX(w, q)}+ 1, for every i ≥ 0
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(we put un+j := un and tm+j := tm for j > 0).

Unfortunately, the class of allowable geodesics is not symmetric, i.e. an allowable
geodesic from u to v may be not allowable when we consider it as a geodesic from v to u.
Allowable geodesics are determined by a sequence of simplices in X, called the directed
geodesic, which has the following local definition:

Definition 2.7. ([JS1]) For vertices v, w ∈ X, a directed geodesic from v to w is a
sequence (σi)n

i=0 of simplices, where σ0 = v, σn = w, satisfying the following properties:

(1) any two consecutive simplices σi, σi+1 are disjoint and span a simplex of X;

(2) for any three consecutive simplices σi, σi+1, σi+2 we have:

(2.1) Res(σi) ∩N(σi+2) = σi+1.

Any polygonal path in X(1) with consecutive vertices (ui)n
i=0 chosen so that ui ∈ σi is

called an allowable geodesic from v to w.

Here and subsequently we denote by N(σ) the union of all simplices intersecting σ.

Proposition 2.8. Let X be a systolic complex.

(1) ([JS1], Corollary 9.8) Any allowable geodesic in X is a geodesic.

(2) ([JS1], Corollary 9.7) For any vertices v, w ∈ X there is exactly one directed geodesic
from v to w. In particular, any two allowable geodesics from v to w are at Hausdorff
distance at most 1.

Example 2.9. A triangulation of the Euclidean plane by congruent equilateral triangles
is called the flat systolic plane and denoted by E2

4. We divide the family of directed
geodesics in E2

4 into three types:
• a directed geodesic of type 3-3 is the sequence of vertices of an arbitrary convex

geodesic in the 1-skeleton of E2
4;

• a directed geodesic of type 2-4 is the sequence of simplices crossed by a line perpen-
dicular to some convex geodesic (elements of the sequence are, alternately, 0-simplices
and 1-simplices);

• a directed geodesic of mixed type is a sequence (σi)n
i=1, where (σi)k

i=1 is a directed
geodesic of type 2-4, (σi)n

i=k is a directed geodesic of type 3-3 and the ‘Euclidean
angle’ between them is 5

6π (as shown in Figure 3.1).
Notice that directed geodesics of type 3-3 or of type 2-4 are symmetric (they remain
directed geodesics after reversing the order), while directed geodesics of mixed type are
not. We use the above terminology to define half-planes of types 3-3 and 2-4:

Definition 2.10.
• An allowable geodesic of type 3-3 is a geodesic in E2

4 disconnecting it into two half-
planes whose every boundary vertex is adjacent to 3 triangles.
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• An allowable geodesic of type 2-4 is a geodesic in E2
4 disconnecting it into two half-

planes whose boundary vertices are adjacent alternately to 2 or 4 triangles.
Systolic half-planes obtained in such a way are called half-planes of type 3-3 and half-planes
of type 2-4, respectively.

3. Flats in systolic complexes

By a flat in a systolic complex X we mean a simplicial map F : E2
4 → X which when

restricted to the 1-skeleton (with the combinatorial metric) is an isometric embedding into
X(1). We will not distinguish between the flat and its image and sometimes refer to a flat
as a subcomplex of X.

The detailed study of flats in systolic complexes is presented in [E]. The main results
are the following:

Theorem 3.1. ([E], Theorem 5.2) Let X be a systolic complex and a simplicial map
F : E2

4 → X be a locally isometric immersion (i.e. the restriction of F to the 1-skeleton of

N(v) is an isometric embedding for any vertex v ∈ E2
4) such that diam(Im F ) ≥ 3. Then

F is a flat.

We say that two flats F and F ′ in a systolic complex are equivalent if they are at
finite Hausdorff distance. As the following theorem shows, they are actually at distance
at most 1 and there is a canonical isometry ϕ : F → F ′ such that d(v, ϕ(v)) ≤ 1 for any
vertex v.

Theorem 3.2. ([E], Theorem 5.4) Let F be a flat in a systolic complex X. Denote by
Th(F ) ⊂ X the full subcomplex spanned by all flats at finite Hausdorff distance from F
(the thickening of F ). Then:

(1) There is a unique simplicial retraction r : Th(F ) → F . Moreover, r restricted to
any flat F ′ ⊂ Th(F ), is an isometry.

(2) The counterimage r−1(v) is a simplex of X, for any vertex v ∈ F .

(3) If v, w ∈ F are connected by an edge, then simplices r−1(v) and r−1(w) span a
simplex of X.

In [E] we study connections between flats in a systolic complex X and noncyclic free
abelian subgroups in a group G acting cocompactly and properly discontinuously on X,
obtaining the simplicial flat torus theorem:

Theorem 3.3. ([E], Theorem 6.1) Let G be a noncyclic free abelian group acting properly
discontinuously by simplicial automorphisms on a uniformly locally finite systolic complex
X. Then:

(1) G is isomorphic to Z2.

(2) There is a G-invariant flat F ⊂ X, unique up to flat equivalence.
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Theorem 3.4. ([E], Corollary 6.2) Let a group G act simplicially, cocompactly and
properly discontinuously on a systolic complex X.

(1) If H < G is a virtually abelian subgroup of rank 2, then there is a flat F , unique up
to flat equivalence, such that Th(F ) is H-invariant.

(2) If H < G is a maximal virtually abelian rank 2 subgroup, then there is a flat F ,
unique up to flat equivalence, such that StabG(Th(F )) = H.

In Section 6 we will need the following result, which is a special case of main theorems
from Section 4 in [E].

Theorem 3.5. (see [E], Theorem 4.13) Let X be a systolic complex and Nr(v) ⊂ E2
4 a

ball about a vertex in E2
4. If a simplicial map S : Nr(v) → X is a minimal surface, then

S is an isometric embedding of 1-skeleton of Nr(v).

Dealing with minimal surfaces we also need the following consequence of the combi-
natorial Gauss-Bonnet Theorem:

Lemma 3.6. (Gauss-Bonnet) If ∆ is any triangulation of a 2-disc, then

∑

v∈∆(0)

def(v) = 6,

where the defect of a vertex is defined as follows:

def(v) =
{

6−#{triangles in ∆ containing v}, if v /∈ ∂∆
3−#{triangles in ∆ containing v}, if v ∈ ∂∆

In particular, if ∆ is systolic (e.g. it is the domain of a minimal surface), then the sum of
defects at boundary vertices is at least 6, with the equality if and only if ∆ has no internal
vertices of negative defect.

Remark 3.7. (see [E], Remark 3.1) If ∆ is a triangulation of a disc and g ⊂ ∂∆ is a
geodesic, then the sum of defects along g (i.e. the sum of defects at vertices of g different
from the endpoints) is at most 1.

3.1. Allowable geodesics in flats

Flats in systolic complexes are (by definition) geodesic subcomplexes, but they do
not need to be convex (nor even quasi-convex), e.g. the triplane in Figure 5.1(c) is the
convex hull of any of the three flats contained in it. However, if we restrict our attention
to allowable geodesics (see Definition 2.7), the behaviour of flats is much nicer.

Let F ⊂ X be a flat in a systolic complex X. Since F is a systolic complex itself,
we may consider allowable geodesics in F – to distinguish them from allowable geodesics
in X, we will call them F -allowable and X-allowable, respectively. Obviously F -allowable
geodesic is a geodesic in X, but it does not need to be X-allowable.
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The aim of this section is the proof of the fact (crucial for proofs of Theorems 3.11
and 5.7) that any F -allowable geodesic is 1-close to any X-allowable geodesic with the
same endpoints. We prove even more, that there is a flat F ′ equivalent to F , such that F ′-
allowability implies X-allowability. Unfortunately, the statement cannot be strengthened,
i.e. we cannot say ‘is X-allowable geodesic’ instead of ‘is 1-close to X-allowable geodesic’.
For that reason we use equivalent flats in the statement of the following proposition.

Proposition 3.8. Let F ⊂ X be a flat in a systolic complex X and (σi)n
i=0 the directed

geodesic in X joining vertices v, w ∈ F . Then:

(1) There is a flat F ′ ⊂ X equivalent to F such that v, w ∈ F ′ and the directed geodesic
in F ′ joining v with w, denoted by (τ ′i)

n
i=0, satisfies

τ ′i = F ′ ∩ σi, for i = 0, 1, . . . , n

(2) An F -allowable geodesic is 1-close to any X-allowable geodesic having the same
endpoints.

Proof: We formulate the proposition in a more precise, but more technical way in the
following lemma. The proposition follows immediately from the lemma:

Lemma 3.9. Let F : E2
4 → X be a flat in a systolic complex X. Denote by (τi)n

i=0 the

directed geodesic in E2
4 joining vertices v with w and by (σi)n

i=0 the directed geodesic in

X joining F (v) with F (w). For any i such that τi ⊂ E2
4 is a 0-simplex, choose arbitrary

vertex ui ∈ σi ⊂ X. Then there is a flat F ′ : E2
4 → X (equivalent to F ) such that:

(1) F ′(τi) = ui, for i such that τi is a 0-simplex in E2
4,

(2) F ′(x) = F (x) for vertices x ∈ E2
4 not considered in (1),

(3) F ′(τi) = Im F ′ ∩ σi, for i = 0, 1, . . . , n.

Proof: The directed geodesic (τi)n
n=0 in E2

4 has the form shown in Figure 3.1. In par-
ticular, τ0, τ2, . . . , τ2k and τ2k+1, τ2k+2, . . . , τn are 0-simplices and τ1, τ3, . . . , τ2k−1 are 1-
simplices (possibly k = 0 or k = 1

2n).

Figure 3.1.

Below we define a sequence of simplices of X and check that it is a directed geodesic
joining v with w. By the uniqueness of directed geodesics (Proposition 2.8) we will obtain
σ̄i = σi.
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If τi is a 0-simplex, then we denote by ρi the simplex spanned by the vertices F ′(τi)
for all flats F ′, such that F ′(x) = F (x) for all x 6= τi (it is the simplex r−1(F (τi)) presented
in Theorem 3.1). Obviously F (τi) ∈ ρi. Let us define the sequence σ̄i:

(3.1)

σ̄0 = F (v)
σ̄2m−1 = Res(σ̄2m−2) ∩N(ρ2m), for m = 1, . . . , k

σ̄2m = Res(σ̄2m−1) ∩ ρ2m, for m = 1, . . . , k
σ̄j = ρj , for j = 2k + 1, . . . , n− 1
σ̄n = F (w)

By the definition of ρi and Theorem 3.2 we can find a flat F ′ satisfying (1) and (2)
for any vertices ui ∈ σ̄i. Then by Theorem 3.2 we see that

(3.2) F ′(τ2m−1) ⊂ σ̄2m−1, for m = 1, . . . , k

so F ′ satisfies (3) for the sequence (σ̄i).
To prove that (σ̄i)n

i=0 is the directed geodesic, we need to check that consecutive
elements of the sequence are disjoint simplices, their union span a simplex and that the
condition (2.1) holds.

By Theorem 3.2 the simplices ρi are pairwise disjoint, ρi and ρi+1 span a simplex for
i = 2k, . . . , n − 1 and dist(ρi, ρi+2) = 2, for any i. Thus σ̄i is a sequence of simplices (to
see that σ̄2m−1 is a simplex we use Fact 2.2 and the fact that dist(ρi, ρi+2) = 2). Simplices
σ̄i and σ̄i+1 are disjoint and span a simplex of X by (3.1) (if i = 0, . . . , 2k − 1) or by the
fact that ρi and ρi+1 span a simplex (if i = 2k, . . . , n− 1). Thus

σ̄i ⊂ Res(σ̄i−1) ∩N(σ̄i+1), for i = 1, . . . , n− 1.

To prove the opposite inclusion, observe that the inclusion

σ̄2m−1 ⊃ Res(σ̄2m−2) ∩N(σ̄2m), for m = 1, . . . , k

follows directly from (3.1). To prove the inclusion

σ̄j = ρj ⊃ Res(σ̄j−1) ∩N(σ̄j+1), for j = 2k + 1, . . . , n− 1

it suffices to notice that if a vertex u is connected by edges with two opposite vertices of
the isometrically embedded hexagon F ′(N(τj)) then by Fact 2.2 (applied to two pentagons
with a vertex u) it is connected to any vertex of F ′(N(τj)).

Thus we only need to prove that

σ̄2m ⊃ Res(σ̄2m−1) ∩N(σ̄2m+1), for m = 1, . . . , k,

i.e. that any vertex u ∈ Res(σ̄2m−1)∩N(σ̄2m+1) is contained in ρ2m (this implies u ∈ σ̄2m,
as σ̄2m = Res(σ̄2m−1) ∩ ρ2m).
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Choose such a vertex u and suppose m < k. By (3.2) there exist edges ue0
2m−1,

ue1
2m−1 and edges ye0

2m+1, ye1
2m+1, uy for some vertex y ∈ σ̄2m+1 (where e0

i and e1
i are the

endpoints of the edge F ′(τi)). Denote the vertices in N(τ2m−1)∩N(τ2m+1) ⊂ E2
4, different

from τ2m, by a0
2m and a1

2m. By the systolicity of X the pentagons ei
2m−1uyei

2m+1a
i
2m, for

i = 0, 1, has two diagonals, however ei
2m−1 and ei

2m+1 are not connected by an edge
(they are at distance 2 in X) and neither are ei

2m−1 and y (as by (3.2) and Theorem
3.2 the distance between ei

2m−1 and σ̄2m+2 is 3). Thus the pentagons have the diagonals
uai

2m, i = 0, 1. Since u is connected to the opposite vertices F ′(a0
2m) and F ′(a1

2m) of
the isometrically embedded hexagon F ′(N(τ2m)), by Fact 2.2 (applied to two pentagons
with vertices u, F ′(a0

2m), F ′(a1
2m) and two other vertices of the hexagon F ′(N(τ2m))) is

connected to all vertices of F ′(N(τ2m)), so u ∈ ρ2m.
If m = k we repeat the above argument, proving that u is connected to vertices

F ′(e0
2k−1) and F ′(τ2k+1), which are opposite vertices of the hexagon F ′(N(τ2k)).
Thus (σ̄i) is the directed geodesic in X joining F ′(v) with F ′(w), so σi = σ̄i for

i = 0, . . . , n.

3.2. Quasi-convex geodesics

In this section we prove that the quasi-convexity of a geodesic g in a systolic complex
implies quasi-convexity of all geodesics at finite Hausdorff distance from g (Proposition
3.11).

Definition 3.10. A subset Q of a metric space X is called δ-quasi-convex if every geodesic
with endpoints in Q is contained in Nδ(Q). Subset Q is called quasi-convex if it is δ-quasi-
convex for some δ.

Proposition 3.11. If F is a flat in a systolic complex X and g ⊂ F a geodesic (finite or
infinite) which is convex as a geodesic in F , then g is 1-quasi-convex as a geodesic in X.
Moreover, any geodesic g′ joining two vertices of g is contained in some flat F ′ equivalent
to F and g′ ⊂ F ′ is convex as a geodesic in F ′.

Proof: By Theorem 3.2 it suffices to prove the second part of the proposition. Choose
vertices a, b ∈ g ⊂ F and a geodesic g′ in X with endpoints a and b. We prove that there
is a flat F ′ equivalent to F , containing g′. We may assume (not losing generality) that
g ∩ g′ = {a, b}.

We proceed by induction on the area of ∆, where S : ∆ → X is a minimal surface
spanning the cycle g−1 ∗ g′. By the Gauss-Bonnet Lemma the sum of defects at boundary
vertices of ∆ is at least 6, whereas the defects at S−1(a) and S−1(b) are at most 2 and
the sums of defects along the geodesics S−1(g) ⊂ ∆ and S−1(g′) ⊂ ∆ do not exceed 1
(Remark 3.7). Thus the sum of defects along S−1(g′) is equal to 1, so there is a vertex
v ∈ S−1(g) ⊂ ∆ of defect 1.

The vertex v has three neighbours in ∆: x, y ∈ S−1(g) ⊂ ∂∆ and z 6∈ S−1(g). Thus
S(z) ∈ X is connected by edges with S(x), S(v), S(y) ∈ g ⊂ F . Sice S(v) is the center of
a hexagon in F with opposite vertices S(x) and S(y). Denote the consecutive vertices of
the hexagon by S(x), a0, b0, S(y), b1, a1. By Fact 2.2 the pentagons S(x)aibiS(y)S(v),
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i = 0, 1 have the diagonals S(v)ai and S(v)bi, i = 0, 1. Thus by replacing S(v) with S(z)
we obtain a flat F̄ equivalent to F and a convex geodesic ḡ ⊂ F̄ such that the area of a
minimal surface spanning the cycle ḡ−1 ∗ g′ is smaller than the area of ∆ (if ḡ−1 ∗ g′ is not
a cycle, but a concatenation of two cycles, we apply the inductive assumption to any of
the two cycles). By the inductive assumption g′ is contained in a flat F ′ equivalent to F̄ ,
thus equivalent to F and g′ ⊂ F ′ is convex as a geodesic in F ′.

Proposition 3.12. If g is a δ-quasi-convex geodesic (finite or infinite) in a systolic complex
X and g′ is Hausdorff c-close to g, then g′ is (8δ + 10c + 4)-quasi-convex.

Proof: Let a′, b′ ∈ g′ be arbitrary vertices and a, b ∈ g be the closest vertices to a′ and b′,
respectively. Denote by ḡ ⊂ g the subgeodesic with endpoints a and b. It suffices to prove
that hdistX(γ′, ḡ) ≤ 4δ + 5c + 2 for any geodesic γ′ connecting a′ with b′.

First we prove that γ′ is close to some geodesic γ with endpoints a and b. Denote
by ξ the concatenation α ∗ γ′ ∗ β−1 (where α and β are geodesics joining a with a′ and
b with b′, respectively). Then |ξ| ≤ |ḡ| + 4c. We reduce the situation to the case when
every geodesic joining a with b intersects ξ only at the endpoints. Let S : ∆ → X be a
minimal surface spanning the closed path ξ ∗ γ−1, where γ is a geodesic with endpoints a
and b such that the area of ∆ is minimal. Then the sum of defects at ∆ along S−1(γ) is
nonpositive, so by the Gauss-Bonnet Lemma the sum of defects along S−1(ξ) is at least 2
(in particular |ξ| > |γ|). Thus either there is a vertex v ∈ S−1(ξ) of defect 2, or there is a
subpath l ⊂ S−1(ξ) having defects 1 at the endpoints and 0 at other vertices of l. Deleting
from ∆ triangles adjacent to v or to l and taking the image of the boundary of the new
disc we obtain a path ξ1 which is Hausdorff 1-close to ξ and |ξ1| = |ξ| − 1. Iterating the
procedure we finally obtain |ξk| = |γ| = |ḡ| for some k ≤ 4c, what implies ξk = γ. Thus
hdistX(ξ, γ) ≤ 4c, so hdistX(γ′, γ) ≤ 5c.

By the assumption γ ⊂ Nδ(g), so γ ⊂ N2δ(ḡ). It follows that ḡ ⊂ N4δ+2(γ) (otherwise
there would be a decomposition ḡ = ḡ1∗s∗ḡ2 such that |s| = 4δ+4 and γ ⊂ N2δ(ḡ1∪ḡ2), so
there would exist an edge ww′ ⊂ γ, such that w ∈ N2δ(ḡ1) and w′ ∈ N2δ(ḡ2), contradicting
the geodesity of ḡ). Therefore ḡ and γ′ are at Hausdorff distance at most 4δ + 5c + 2.

3.3. Configurations of two flats

Theorem 3.13. Let F and F ′ be two flats in a systolic complex X having nonempty
maximal intersection (among all pair of flats in equivalence classes [F ] and [F ′]). Then

(3.3) F ∩ F ′ = H1 ∩ . . . ∩Hn

for some collection of half-planes H1, . . . , Hn ⊂ F , each of type 3-3 or 2-4.

Proof: There are 3 directions of directed geodesics of type 3-3 and 3 directions of directed
geodesics of type 2-4 in E2

4. Consider the relation of being at finite Hausdorff distance on
the family of half-planes of type 3-3 and half-planes of type 2-4. There are 12 equivalence
classes H1, . . . ,H12, each ordered linearly by inclusion. We order the indices such that the
‘Euclidean angle’ between boundaries of elements of Hi and Hi+1 is 5π

6 (using the cyclic
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order of indices). Denote by Hi the minimal element of Hi containing F ∩F ′ if such exists,
or Hi = E2

4 otherwise, for i = 1, . . . , 12. We prove that F ∩ F ′ = H1 ∩ . . . ∩H12.
The intersection F ∩F ′ can be equal to the set of 0-simplices of some (finite or infinite)

directed geodesic of type 2-4, when it is clearly of the form (3.3). Let us assume this is
not the case. Then H1 ∩ . . . ∩H12 is connected.

Step 1: Let v, w ∈ F ∩ F ′ be vertices and (τi)n
i=0 the directed geodesic from v to w in F .

Then every τi which is a 0-simplex is contained in F ∩ F ′.

Let (τ ′i)
n
i=0 be the directed geodesic from v to w in F ′ and (σi)n

i=0 the directed geodesic
in X. Assume τi is a 0-simplex not contained in F ∩ F ′. If τ ′i is also a 0-simplex, then by
Lemma 3.9 we replace F and F ′ with equivalent flats F̄ and F̄ ′, obtaining τ̄i = τ̄ ′i ⊂ σi,
contradicting the maximality of F ∩ F ′. If τ ′i is a 1-simplex, then by Lemma 3.9 we can
replace F with an equivalent flat F̄ , such that τ̄i ⊂ τ ′i ⊂ σi, again obtaining contradiction
with the maximality of F ∩ F ′.

Step 2: For every Hi ⊂ F the intersection ∂Hi ∩ (F ∩ F ′) is connected.

If Hi is a half-plane of type 3-3, then the statement follows from Step 1. Thus let Hi

be a half-plane of type 2-4. Then, by Step 1 and the minimality of Hi, ∂Hi ∩ (F ∩ F ′)
contains the set of 0-simplices of some (finite or infinite) directed geodesic of type 2-4 in
F (black dots in Figure 3.2). If F ∩F ′ contains only 1 black dot the statement is obvious.
As we assumed F ∩ F ′ is not contained in the set of 0-simplices of a directed geodesic of
type 2-4, there is a vertex in Hi ∩ (F ∩ F ′) different from the black ones. Moreover by
Step 1 and the form of a directed geodesic in a flat (see Figure 3.1) there is a vertex in
Hi ∩ (F ∩ F ′) at distance at most 2 from some black vertex.

If one of the vertices marked by white dots in Figure 3.2 belongs to F ∩ F ′ (say
u ∈ F ∩ F ′), then by Step 1 all the vertices marked by white dots adjacent to two black
vertices belong to F ∩ F ′ (they are 0-simplices of a directed geodesic in F joining u with
a properly chosen black vertex).

If one of the vertices marked by white squares belongs to F ∩ F ′ (say v ∈ F ∩ F ′),
then either we can connect v with a black vertex by a convex geodesic passing through
a vertex marked by a white dot and proceed as above or F ∩ F ′ contains only two black
vertices (a and b).

Figure 3.2.
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In the latter case by Step 1 and the maximality of F ∩ F ′, vertices a, b and v are
pairwise connected by geodesics of type 2-4 and length 2 in F ′ as well as in F . Thus a
vertex u′ ∈ N(a)∩N(b)∩N(v) ⊂ F ′ is connected by edges with a, b, v ∈ F , so by Fact 2.2
it is connected to every vertex of N(u) ⊂ F , contradicting the maximality of F ∩ F ′ (we
obtain a flat F̄ , equivalent to F , by replacing u with u′).

Step 3: ∂(H1 ∩ . . . ∩H12) ⊂ F ∩ F ′.
Let ai ∈ ∂Hi and ai+1 ∈ ∂Hi+1. One of the half-planes Hi and Hi+1 is of type 3-3, the

other is of type 2-4 and ’the Euclidean angle’ between them is 5π
6 . The directed geodesic

in F either from ai to ai+1 or from ai+1 to ai passes through ∂Hi∩∂Hi+1 (compare Figure
3.1), so by Steps 1 and 2 we have ∂Hi ∩ ∂Hi+1 ⊂ F ∩ F ′.

If Hi 6= E2
4 and Hi+1 = E2

4, then there are arbitrarily large H ∈ Hi+1 such that
∂H ∩ (F ∩F ′) 6= ∅, thus by the same argument as above ∂Hi∩∂H ⊂ F ∩F ′ and an infinite
ray in ∂Hi is contained in F ∩ F ′. This completes the proof of Step 3.

Step 4: F ∩ F ′ = H1 ∩ . . . ∩H12.

The inclusion ⊂ follows directly from the definition of Hi. If H1 ∩ . . . ∩ H12 has
no internal vertices, then the opposite inclusion is an immediate consequence of Step 3.
Otherwise ∂(H1∩ . . .∩H12) disconnects F into two connected components, one of which is
spanned by the internal vertices of H1 ∩ . . .∩H12. Choose any vertex v in this component
and a convex geodesic g in F passing through v with endpoints on ∂(H1 ∩ . . . ∩H12). By
Steps 1 and 3 g ⊂ F ∩ F ′.

Corollary 3.14. For any two flats F , F ′ in a systolic complex X there is an isometry
ϕ : F ′ → F extending idF∩F ′ .

Proof: We need to show that if A = H1 ∩ . . . ∩ H12 and A′ = H ′
1 ∩ . . . ∩ H ′

12 (where
Hi and H ′

i are as in Theorem 3.13 and Hi and H ′
i are of the same type) are isometric

subcomplexes of E2
4, then this isometry can be extended to an automorphism of E2

4. This
follows from the fact, that A is uniquely determined up to an automorphism of E2

4 by the
sequence of integers (s1, . . . , s12), where si := |A(0) ∩ ∂Hi|.

4. Asymptotic cones

In this section we prove that any geodesic in an asymptotic cone of X(1) (where X is
a systolic complex) can be obtained as an ultralimit of geodesics in X. This fact will be
used in the proof of Theorem 5.13.

Throughout the paper we only consider asymptotic cones of the 1-skeleta of systolic
complexes, thus we will omit words ‘the 1-skeleton’ for brevity and refer to them as to
‘asymptotic cones of systolic complexes’.

Below we shortly recall the definition of an asymptotic cone. For a more detailed
introduction to asymptotic cones we refer the reader to [BH] and [DS].

Let ω be a non-principal ultrafilter over N, i.e. a finitely additive measure on the
class P(N) of all subsets of N such that each subset has measure 0 or 1, all finite sets have
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measure 0 and N has measure 1. We say that g ∈ R is an ω-limit of a sequence (xn)∞n=1

of real numbers (and denote it g = limωxn) if every neighbourhood of g contains elements
xn for ω-almost all indices n. We also write limωxn = ∞ if for every M the inequality
xn > M holds for ω-almost all indices n. The reason for considering ω-limits is that every
sequence of non-negative real numbers has a unique (finite or infinite) ω-limit.

Definition 4.1. Let (Xn, dn), n ∈ N be a sequence of metric spaces, ω a non-principal
ultrafilter and ?n ∈ Xn a sequence of points. The metric space

limω(Xn, dn)?n =
{
[(xn)]∼ : xn ∈ Xn, d

(
[(xn)]∼, [(?n)]∼

)
< ∞}

where (xn) ∼ (yn) if and only if limωdn(xn, yn) = 0, with the metric d defined by

d
(
[(xn)]∼, [(yn)]∼

)
= limωd(xn, yn)

is the ω-limit of the sequence (Xn, dn) relative to the observation point (?n).

Definition 4.2. Let (X, d) be a metric space, ω a non-principal ultrafilter, λ = (λn)∞n=1

a sequence of positive numbers such that limn→∞ λn = ∞ and ? = (?n)∞n=1 a sequence of
points in X. Then the metric space

Coneω(X; λ, ?) = limω(X, 1
λn

d)?n

is the asymptotic cone of X relative to the scaling sequence λ and the observation point ?.

If An is a sequence of subsets of X, we treat limωAn as a subset of Coneω(X; λ, ?).
Formally this should be written as limω(An, λ−1

n dX), where dX is the restricted metric,
but we will omit metrics, for brevity. The other convention will be to write ‘(xn)’ instead
of ‘[(xn)]∼’ for points of asymptotic cones, what should not cause any misunderstandings.

As asymptotic cones of (L,C)-quasi isometric spaces are L-bi-Lipschitz equivalent,
we can define an asymptotic cone of a group, considered up to bi-Lipschitz equivalence.
Notice, that since a group treated as a metric space is homogeneous, an asymptotic cone
of a group does not depend on an observation point.

An asymptotic cone of a geodesic space is a geodesic space, since if (xn) and (yn)
represent points of Coneω(X; λ, ?) and gn is a geodesic in X joining xn with yn, n = 1, 2, . . .,
then limωgn is a geodesic in Coneω(X; λ, ?) joining (xn) with (yn). However, there can
exist geodesics in Coneω(X; λ, ?) which do not arise in this way. The aim of this section is
to show this is not the case of systolic spaces (Proposition 4.4). The first step in the proof
is the following lemma.

Lemma 4.3. If x0, x1, x2 are vertices of a systolic complex X, then there exist geodesics
γi with endpoints xi−1 and xi+1 for i = 0, 1, 2 (we use the cyclic order of indices) such
that:

(1) γi ∩ γi+1 is a geodesic (possibly degenerated) with endpoints xi−1 and x′i−1;
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(2) if we denote the subgeodesic (possibly degenerated) with endpoints x′i−1 and x′i+1

by γ′i ⊂ γi, then either x′0 = x′1 = x′2 or a minimal surface S : ∆ → X spanning the
cycle γ′0 ∗γ′1 ∗γ′2 has an equilaterally triangulated equilateral triangle as the domain.

Figure 4.1.

Proof: There clearly exist in X geodesics satisfying (1). Take γ0, γ1, γ2 such that the
domain ∆ of a minimal surface S : ∆ → X spanning the cycle γ′0 ∗ γ′1 ∗ γ′2 has the minimal
area.

Denote by s0, s1, s2 ∈ ∆ the vertices that are mapped to x′0, x′1 and x′2, respectively.
If v ∈ ∂∆ is different from s0, s1, s2, then it has a nonpositive defect (def(v) 6= 2 by
the geodesity of γ′i and def(v) 6= 1 by the minimality of the area of ∆). Thus by the
Gauss-Bonnet Lemma def(si) = 2, i = 0, 1, 2 and the remaining vertices of ∆ have defects
0. Therefore ∆ is an equilaterally triangulated equilateral triangle. This is proved by
induction on the perimeter of ∆ – we cut out triangles touching one side of the triangle
and apply the inductive assumption.

Notice that by Theorem 4.13 in [E] and by the fact that γi were chosen so that the
area of ∆ is minimal, the map S is an isometric embedding of ∆(1).

Proposition 4.4. Let Coneω(X; λ, ?) be an asymptotic cone of a systolic complex X.
Then for every geodesic g : [0, l] → Coneω(X; λ, ?) there exists a sequence of geodesics
gn : [0, sn] → X, n = 1, 2, . . . such that g = limωgn. Moreover, if (xn) = g(0) and
(zn) = g(l), then gn can be chosen to have endpoints at xn and zn, for n = 1, 2, . . .

Proof: Let g(0) = x = (xn), g( l
2 ) = y = (yn), g(l) = z = (zn), where xn, yn, zn are

vertices of X. By Lemma 4.3 there are geodesics αn, βn, γn connecting yn with zn, zn

with xn and xn with yn, respectively, and vertices x′n ∈ βn∩γn, y′n ∈ γn∩αn, z′n ∈ αn∩βn

such that:

d(xn, yn) = d(xn, x′n) + d(x′n, y′n) + d(y′n, yn) = an + tn + bn

d(yn, zn) = d(yn, y′n) + d(y′n, z′n) + d(z′n, zn) = bn + tn + cn

d(zn, xn) = d(zn, z′n) + d(z′n, x′n) + d(x′n, xn) = cn + tn + an

where tn = d(x′n, y′n) = d(y′n, z′n) = d(z′n, x′n) is the length of the side of the equilateral
triangle and an = d(xn, x′n), bn = d(yn, y′n), cn = d(zn, z′n). Hence

limωλ−1
n (an + tn + bn) = d(x, y) =

1
2
l = d(y, z) = limωλ−1

n (bn + tn + cn)
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and
limωλ−1

n (an + tn + cn) = d(x, z) = l

what implies (as tn, bn ≥ 0):

limωλ−1
n bn = limωλ−1

n tn = 0.

Thus the sequences (yn), (y′n) and (x′n) represent the same point y ∈ Coneω(X;λ, ?). By
putting g1

n := βn we obtain a sequence of geodesics in X such that limωg1
n has endpoints

g(0) and g(l) and passes through g( l
2 ).

Iterating the above procedure we construct a double-indexed sequence of geodesics
gk

n : [0, sn] → X satisfying:

(1) gk
n(0) = xn and gk

n(sn) = zn,
(2) gk

n(sn · m
2k ) = gk′

n (sn · m
2k ) for k′ ≥ k and m = 0, 1, . . . , 2k,

(3) limωgk
n passes through g(l · m

2k ), m = 0, 1, . . . , 2k.

Now consider the diagonal subsequence of geodesics hn = gn
n . Since for a fixed k

and 0 ≤ m ≤ 2k we have hn(sn · m
2k ) = gk

n(sn · m
2k ) for almost all indices n, the sequence

(hn(sn · m
2k ))∞n=1 represents g(l· m

2k ) ∈ Coneω(X; λ, ?), so h = limωhn passes through g(l· m
2k ).

Thus geodesics g and h (h is a geodesic as an ultralimit of geodesics) coincide on a dense
set, so g = h = limωhn and g is an ultralimit of geodesics in X.

Proposition 4.5. Let Fn be a sequence of flats in a systolic complex X. Then the
ultralimit limωFn ⊂ Coneω(X;λ, ?) is isometric to a plane P with the following metric:

P = {(x, y, z) ∈ (R3, ‖ · ‖∞) : x + y + z = 0}.

Proof: As flats are isometric to E2
4, we only need to prove that P = Coneω(E2

4;λ, ?).
The statement follows from two facts: first that the 0-skeleton of E2

4 (with the metric
induced from the 1-skeleton of E2

4) is isometric to

P0 = {(x, y, z) ∈ (Z3, ‖ · ‖∞) : x + y + z = 0},

and the second that the following map is an isometry (where ? = (?1, ?2, ?3)):

Coneω(P0;λ, ?) 3 (
(xn, yn, zn)

)∞
n=1

7→
(
limω

xn − ?1

λn
, limω

yn − ?2

λn
, limω

zn − ?3

λn

)
∈ P

5. Isolated Flats Property

In a systolic complex there are no flats of dimension higher than 2, so we need to
modify the Isolated Flats Property presented in [Hr2] for CAT(0)-spaces in the following
way:
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Definition 5.1. (Isolated Flats Property) A cocompact systolic complex X has the
Isolated Flats Property if there exists a function ψ : N→ N such that

(5.1) diam(Nc(F ) ∩Nc(F ′)) ≤ ψ(c), for any non-equivalent flats F, F ′ ⊂ X.

One of the first consequences of the Isolated Flats Property of a systolic complex X
is that groups acting cocompactly and properly discontinuously on X satisfy the so-called
Z × Z-conjecture (see Corollary 5.4). This fact will be used in Section 6 to prove that
such groups are relatively hyperbolic with respect to their maximal virtually abelian rank
2 subgroups.

Non-trivial examples of systolic complexes with the Isolated Flats Property were con-
structed by T. Januszkiewicz and J. Świa‘tkowski, using the technique of developments of
billiards introduced in [JS3]. In particular, they constructed a group with one end, acting
cocompactly and properly discontinuously on some systolic normal pseudomanifold with
the Isolated Flats Property.

Fact 5.2. If X is a locally finite systolic complex with the Isolated Flats Property, then
every compact subcomplex of X intersects flats from only finitely many equivalence classes.

Proof: It suffices to consider the case when the subcomplex is a single vertex v. By (5.1)
non-equivalent flats passing through v have distinct intersections with the ball Nψ(0)(v),
which by the local finiteness of X has only finitely many subcomplexes.

Proposition 5.3. Let X be a systolic complex with the Isolated Flats Property and G a
group acting cocompactly and properly discontinuously on X. Then for every flat F and
the stabilizer Stab(Th(F )) of its thickening holds:

(1) Stab(Th(F )) acts cocompactly on Th(F ),
(2) Stab(Th(F )) is a maximal virtually abelian rank 2 subgroup of G.

Proof: Suppose there are vertices vi ∈ Th(F ), i = 1, 2, . . . representing pairwise different
orbits of the action of Stab(Th(F )). By the local finiteness of X and by Theorem 3.2
we may assume that all vi lie in the same flat F ′ (equivalent to F ). As the number of
G-orbits in X(0) is finite, we can choose a subsequence vki ∈ F ′, i = 0, 1, 2, . . . of vertices
from the same G-orbit, so there exist elements gi ∈ G, such that gi(vk0) = vki . Hence flats
g−1

i (F ′), i = 0, 1, 2, . . . pass through vk0 , so by Fact 5.2 there are two equivalent among
them. Therefore gig

−1
j ∈ Stab(Th(F )) for some i 6= j, contradicting the assumption that

vki and vkj were chosen from distinct Stab(Th(F ))-orbits.
As the stabilizer acts cocompactly and properly discontinuously on Th(F ), the induced

action of Stab(Th(F )) on E2
4 (see Theorem 3.2) is such by Corollary 5.5 in [E]. As the

group of automorphisms of E2
4 is virtually abelian rank 2, the stabilizer Stab(Th(F )) is

also such and by Theorem 3.4 it has no finite extension in G, i.e. it is a maximal virtually
abelian rank 2 subgroup.

Corollary 5.4. Let G be a group acting cocompactly and properly discontinuously on
a systolic complex X with the Isolated Flats Property. Then there is a bijective corre-
spondence between equivalence classes of flats in X and maximal virtually abelian rank
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2 subgroups of G, established by the map assigning to each flat F the stabilizer of its
thickening Stab(Th(F )).

Proof: It is an immediate consequence of Theorem 3.4 and Proposition 5.3.

5.1. Triplanes

This section is devoted to the proof of the theorem stating that a cocompact systolic
complex satisfies the Isolated Flats Property if and only if it does not contain isometrically
embedded triplanes. This is a simplicial analog of the CAT(0)-result of D. Wise (see [Hr1]).
A triplane in Wise’s theorem is the geodesic metric space obtained by gluing three half-
planes by isometries along their boundaries. In the systolic case there are three similar
configurations:

(a) By gluing three half-planes of type 3-3 (see Definition 2.9) by isomorphisms along
their boundaries we obtain the triplane of type 3-3 (Figure 5.1(a)).

(b) Let Hi be a half-plane of type 3-3 and li ⊂ Hi the convex geodesic at distance 1 from
∂Hi, for i = 0, 1, 2. The twisted triplane of type 3-3 is constructed by identifying
∂Hi with li+1 ⊂ Hi+1 (as in Figure 5.1(b)) and taking the flag completion of the
obtained complex (the group of its automorphisms is generated by a single glide
rotation).

(c) To obtain the triplane of type 2-4 (Figure 5.1(c)), we take a sequence of tetrahedra
σi = σ(vi, ai, bi, ci) and σ′i = σ(vi−1, ai, bi, ci), for i ∈ Z and glue half-planes of type
2-4 (see Definition 2.9) along the geodesics α, β, γ, spanned by the sets of vertices
{vi, ai : i ∈ Z}, {vi, bi : i ∈ Z} and {vi, ci : i ∈ Z}, respectively, so that the positive
boundary vertices are glued to vi.

Figure 5.1.

In every triplane there are 3 distinct embedded flats F0, F1, F2 having the property
that any two of them span the whole triplane.

Triplanes are systolic complexes. To prove this it suffices to check that links at their
vertices are 6-large. It is immediate for vertices in the interiors of the glued half-planes.
Links at other vertices are presented in Figure 5.2.
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Figure 5.2.

Proposition 5.5. Let T be a triplane, X a systolic complex and f : T → X a simplicial
map such that the restriction of f to the 1-skeleton of N(v) is an isometric embedding
for any vertex v ∈ T and diam(Im f) ≥ 3. Then f restricted to the 1-skeleton of T is an
isometric embedding.

Proof: Since any two vertices v, w ∈ T are contained in some flat Fi which is a geodesic
subcomplex T , it suffices to prove that f |Fi is an isometric embedding for i = 0, 1, 2. All
restrictions f |Fi are locally isometric immersions, thus to prove that they are isometric
embeddings we only need to prove that their images have diameters at least 3 (Theorem
3.1). Since there are two points x, y ∈ T such that d(f(x), f(y)) ≥ 3, one of the flats has
the image of diameter at least 3, hence it is an isometric embedding and all flats have
images of infinite diameter.

Lemma 5.6. Let X be a locally finite cocompact systolic complex and v ∈ E2
4 an arbitrary

vertex.

(1) For any r > 0 there exists a = a(r) > r such that if ϕ : Na(v) → X is an isometric
embedding, then ϕ(Nr(v)) is contained in some flat Fϕ.

(2) If X satisfies the Isolated Flats Property, then there exists r0 = r0(X) such that for
any r ≥ r0 the flat Fϕ defined in (1) is unique up to flat equivalence.

Proof: a.c. Suppose there exist a sequence of integers ak > 0 and a sequence of isometric
embeddings ϕk : Nak

(v) → X such that lim ak = ∞ and ϕk(Nr(v)) is not contained in any
flat, for k = 1, 2, . . .. By cocompactness of X we may assume (passing to a subsequence)
that vertices ϕk(v) ∈ X coincide. Thus, as X is locally finite, we can choose a subsequence
aki , i = 1, 2, . . . such that ϕki |Nr(v) coincide. By the standard diagonal argument we
find a subsequence ϕkij

convergent to a flat F . Thus ϕkij
(Nr(v)) ⊂ F , contradicting the

assumption.
The remaining part of the lemma follows from (5.1), by putting r0 = ψ(0).

Theorem 5.7. A cocompact systolic space X has the Isolated Flats Property if and only
if it does not contain isometrically embedded triplanes.

Proof: The ‘only if’ part is trivial, as any triplane contains non-equivalent flats with
infinite intersection. We prove the ‘if’ part, i.e. X not satisfying the Isolated Flats Property
contains an isometrically embedded triplane.

Step 1: There exist flats F, F ′ ⊂ X at infinite Hausdorff distance and bi-infinite geodesics
l ⊂ F , l ⊂ F ′ both of type 3-3 or both of type 2-4 such that hdistX(l, l′) < ∞.
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As X does not satisfy the Isolated Flats Property, there is a constant c ≥ 0 and two
sequences of flats: (Fn)∞n=1 and (F ′n)∞n=1 such that hdistX(Fn, F ′n) = ∞, for n = 1, 2, . . .
(flats at finite Hausdorff distance are equivalent) and

(5.2) lim
n→∞

diam(Nc(Fn) ∩Nc(F ′n)) = ∞.

We may assume, not losing generality, that the intersection Fn ∩F ′n is maximal among all
pairs of flats from equivalences classes of Fn and F ′n.

Let c be minimal and consider the case c = 0. By Corollary 3.14 there exist isometries
ϕn : Fn → F ′n extending idFn∩F ′n . By Theorem 3.13 there exist (in the boundary of
Fn ∩F ′n) geodesics gn ⊂ Fn ∩F ′n of type 3-3 or 2-4 such that lim |gn| = ∞ and the middle
vertices an ∈ gn ⊂ Fn are such that N(an) ∩ Fn 6= N(an) ∩ F ′n.

Suppose the ball Nr(an)∩Fn, r > 0 is contained in 1
100r-neighbourhood of F ′n. Then

we join the vertices p1, . . . , p6 of the hexagonNr(an)∩Fn with the closest vertices p′1, . . . , p
′
6

of F ′n and connect p′i with p′i+1 by allowable geodesics in F ′n, for i = 1, . . . , 6. By the Fellow
Traveller Property (Proposition 2.6) the minimal surfaces S : ∆ → X and S′ : ∆′ → X
obtained by restricting F and F ′ have the property that S(∂∆) and S′(∂∆′) are ( 3

100r+1)-
close to each other. Then by Theorem 4.16 in [E] we can find a flat F̄n equivalent to Fn,
such that N(an) ∩ F̄n = N(an) ∩ F ′n, contadicting the maximality of Fn ∩ F ′n).

Thus for any r > 0 the ball Nr(an) ∩ Fn is not contained in 1
100r-neighbourhood of

F ′n and by the standard diagonal argument we obtain flats F and F ′ at infinite Hausdorff
distance and bi-infinite geodesic g ⊂ F ∩ F ′ of type 3-3 or 2-4.

Now consider the case c > 0. By (5.2) there exist vertices xn, yn ∈ Fn and x′n, y′n ∈ F ′n
such that:

dX(xn, x′n) ≤ 2c and dX(yn, y′n) ≤ 2c

lim
n→∞

dX(xn, yn) = ∞ and lim
n→∞

dX(x′n, y′n) = ∞

Connect xn with yn and x′n with y′n by allowable geodesics αn in Fn and α′n in F ′n,
respectively (they are allowable in flats, thus may be not allowable in X, but by Lemma
3.8 they are 1-close to allowable geodesics in X). By the Fellow Traveller Property the
Hausdorff distance between αn and α′n does not exceed 3c + 3. A directed geodesic in a
flat consists of two subgeodesics (possibly degenerated): a directed geodesic of type 3-3
and a directed geodesic of type 2-4 (Figure 3.1), thus we may assume (by replacing αn and
α′n with their subgeodesics and passing to subsequences) that all αn are of the same type
(3-3 or 2-4) and all α′n are also such.

Denoting by an ∈ αn the middle vertex, for r > 100c the ball Nr(an) ∩ Fn is not
contained in 1

100r-neighbourhood of F ′n (otherwise, proceeding similarly as in the case
c = 0, we obtain contradiction with the minimality of c). Thus, by the standard diagonal
argument, we obtain as the limit two flats F and F ′ and a bi-infinite geodesics of type 3-3
or 2-4: g ⊂ F and g′ ⊂ F ′ such that hdistX(g, g′) < ∞ and hdistX(F, F ′) = ∞.

By Proposition 3.11 a bi-infinite geodesic of type 3-3 in a flat is quasi-convex in the
systolic complex X, whereas a bi-infinite geodesic of type 2-4 in a flat is not (its convex
hull contains the whole flat). Moreover, by Proposition 3.12, bi-infinite geodesics in X at
finite Hausdorff distance either are both quasi-convex or both are not. Thus g and g′ are
either both of type 3-3 or both are of type 2-4.
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Step 2: There exists a ‘large-scale triplane’, i.e. half-planes H1, H2, H3 of the same type
such that:

(5.3) hdistX(Nc(Hi) ∩Hj , ∂Hj) < ∞ and hdistX(∂Hi, ∂Hj) < ∞, for all i 6= j, c ≥ 0.

By Step 1 of the proof there exist flats F1 and F2 and bi-infinite geodesics g1 ⊂ F1 and
g2 ⊂ F2 either both of type 3-3 or both of type 2-4 such that hdistX(g1, g2) < ∞ and
hdistX(F1, F2) = ∞. Geodesics g1 and g2 divide F1 and F2 into 4 half-planes of the same
type: H+

1 , H−
1 , H+

2 , H−
2 . We show that three of them satisfy (5.3).

Obviously hdistX(Nc(H±
i ) ∩H∓

i , ∂H∓
i ) < ∞, for i = 1, 2 and c ≥ 0, so we only need

to consider pairs H±
i and H±

j for i 6= j. Suppose that not all pairs satisfy (5.3). Without
loss of generality, we can assume there is a constant c ≥ 0 such that

hdistX(Nc(H+
1 ) ∩H+

2 , ∂H+
2 ) = ∞.

Then there is a sequence of vertices xn ∈ H+
2 , such that

(5.4) dist(xn, ∂H+
2 ) > n and distX(xn, H+

1 ) ≤ c.

Since ∂H+
2 is an allowable geodesic (allowable in F2) of type 3-3 or 2-4, we see that any

vertex v ∈ H+
2 at distance at most n from ∂H+

2 lies on some allowable geodesic (allowable
in F2) joining xn with ∂H+

2 or joining ∂H+
2 with xn. As by Proposition 3.8 allowable

geodesics in F2 are 1-close to allowable geodesics in X, by the Fellow Traveller Property
and (5.4) we obtain H+

2 ⊂ N3c′+3(H+
1 ), where c′ = max{c, hdistX(∂H+

1 , ∂H+
2 )}.

Since hdistX(∂H+
1 , ∂H+

2 ) < ∞, we can find a sequence of vertices yn ∈ H+
1 such that

dist(yn, ∂H+
1 ) > n and distX(yn,H+

2 ) ≤ 3c′ + 3

and repeat the argument from the previous paragraph to show that H+
1 and H+

2 are
actually at finite Hausdorff distance.

Thus any pair H±
1 , H±

2 either satisfies (5.3) or is at finite Hausdorff distance. As there
is at most one pair of half-planes at finite Hausdorff distance among them, we can choose
three half-planes satisfying (5.3).

Step 3: There exist flats F1, F2, F3 and half-planes of the same type H1, H2, H3 satisfying
(5.3) such that Hi ∪Hj ⊂ Fk.

In Step 2 we have constructed H1, H2, H3, satisfying (5.3). Fix i 6= j. Geodesics
∂Hi and ∂Hj are at finite Hausdorff distance. Thus there is a simplicial isomorphism
ϕ : ∂Hi → ∂Hj such that dX(v, ϕ(v)) < c for every vertex v ∈ ∂Hi and some c > 0.
Join v with ϕ(v) by a geodesic αv in X and for every edge vw ⊂ ∂Hi consider a minimal
surface fvw : ∆vw → X spanning the closed path vw ∗ αw ∗ ϕ(w)ϕ(v) ∗ α−1

v . Gluing these
maps with embeddings Hi ⊂ X and Hj ⊂ X we obtain a simplicial map f : P → X,
where P is the union of disjoint half-planes Pi and Pj of the same type (mapped to Hi

and Hj , respectively) and a strip S obtained by gluing ∆vw for all edges vw such that
∂S = ∂Pi ∪ ∂Pj . By Lemma 3.4(2) in [E] ∆vw ⊂ N 1

6 (2c+2)(∂∆vw), so ∂Pi, ∂Pj and S are
pairwise at finite Hausdorff distance in P .
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Choose half-planes P ′i ⊂ Pi and P ′j ⊂ Pj with the property that f(P ′i ), f(P ′j) and
f(S) have pairwise disjoint 1-neighbourhoods. Now we iterate the following procedure:

(a) if there is a cycle of length 3 in P not bounding a triangle, then we cut out its filling
and glue a single triangle instead;

(b) if every cycle of length 3 bounds a triangle and there is a vertex v ∈ P adjacent to
4 or 5 triangles, then we cut out the open star of v and glue a disc without internal
vertices such that f can be modified over the new triangulation (this is possible since
X is systolic);

(c) if there is a vertex v ∈ P adjacent to 6 or more triangles such that ∂N(v) can be
filled in X with a disc without internal vertices, then we proceed as in (b).

As we modify P , we modify f . Since f |P ′
i

and f |P ′
j

are isometric embeddings and S

is at finite Hausdorff distance from ∂P ′i , every compact subcomplex of X contains images
of only finitely many vertices of P . Thus the procedure terminates in every ball in P .

As the limit we obtain a systolic triangulation P ′ of a plane and a locally isometric
immersion f : P ′ → X (i.e. the restriction of f to the 1-skeleton of N(v) is an isometric
embedding for any vertex v ∈ P ′). Applying the Gauss-Bonnet Lemma to large systolic
discs ∆ ⊂ P ′ whose boundaries are concatenations of 4 geodesics: two being subsegments
of ∂P ′1 and ∂P ′2 and two having lengths at most hdistP ′(∂P ′1, ∂P ′2), we see that P ′ has at
most 6 vertices of negative defects (by Remark 3.7 the sum of defects along any side of the
quadrilateral is at most 1 and the defect at any of its four vertices is at most 2).

Thus there exists a systolic disc K = Nr(v) ⊂ P ′ such that every vertex in P ′ \K is
adjacent to 6 triangles. We may assume v ∈ P ′\(P ′1∪P ′2) and r > 2·hdistP ′(∂P ′1, ∂P ′2). We
prove by induction on c that for every r ≥ c ≥ 0 the subcomplex Nc(P ′1) \K is isomorphic
to a half-plane (of type 3-3 or 2-4) with cut out a disc intersecting its boundary. Two half-
planes (of the same type) H and H ′ with infinite intersection such that hdist(∂H, H∩H ′) <
∞ have the property that the closure of H \ H ′ is also a half-plane (of type 3-3 or 2-4).
Thus (Nr(P ′1) \K) \ (P ′2 \K) is equal to a half-plane with a cut-out systolic disc. Gluing
it with P ′2 \K we obtain a complex isomorphic to E2

4 with a hole. By the Gauss-Bonnet
Lemma (applied to the hole) P ′ is isomorphic to E2

4, so by Theorem 3.1 f is a flat.

Step 4: There exists a triplane isometrically embedded in X.

Let F1, F2, F3 be flats constructed in Step 3. Choose F1 and F2 to have maximal
intersection among pairs of flats from equivalence classes [F1] and [F2]. As F1∩F2 contains
a half-plane (of type 3-3 or 2-4), by Theorem 3.12 it is equal to some half-plane.

The geodesics ∂H1 ⊂ F2 ∩ F3, ∂H2 ⊂ F1 ∩ F3 and ∂H3 ⊂ F1 ∩ F2 are pairwise at
finite Hausdorff distance. Consider the complex T obtained by gluing the strips Si ⊂ Fi,
for i = 1, 2, 3, bounded by these geodesics.

Choose a vertex v ∈ Fi which is contained in exactly one of the flats F1, F2, F3

and two disjoint cycles γ and γ′ in T representing the generator of π1(T ), such that the
Hausdorff distance between v and any of the cycles is larger than max{|γ|, |γ′|} and v is
contained in the compact connected component T ′ of T \ (γ ∪ γ′). Span minimal surfaces
f : ∆ → X and f ′ : ∆′ → X on the cycles γ and γ′, respectively, and glue maps f ,
f ′ with the embedding T ′ ⊂ X to obtain a simplicial map from a triangulated sphere
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p : S → X. By Theorem 2.5 p can be extended to a simplicial map P : B → X, where
B is a triangulated ball with no internal vertices such that ∂B = S. Then the link Bv is
a triangulated disc of perimeter 6 and (as Fi is isometrically embedded) P maps internal
vertices of Bv to Fj ∪ Fk, i 6= j 6= k 6= i, and the boundary ∂Bv to the cycle having no
diagonals. By Lemma 4.13 in [E] there is a flat F ′i , equivalent to Fi, obtained by replacing
v ∈ Fi with some vertex v′ ∈ Fj ∪ Fk, i 6= j 6= k 6= i.

Iterating this procedure (as flats are isometrically embedded it terminates in every
compact subcomplex of X), we obtain flats F ′1, F ′2, F ′3 such that every vertex of F ′1∪F ′2∪F ′3
is contained in at least two of the flats and (by the maximality of F1∩F2) H3 = F ′1∩F ′2 =
F1∩F2 which is a half-plane of type 3-3 or 2-4. In particular, the half-planes H1 = F ′1 \H3

and H2 = F ′2 \H3 are contained in F ′3 and hdistX(∂H1, ∂H2) ≤ 2.

If the half-planes are of type 3-3 and hdistX(∂H1, ∂H2) = 2, then F ′1 ∪ F ′2 ∪ F ′3 is the
isometrically embedded triplane of type 3-3 (Figure 5.1(a)).

If the half-planes are of type 3-3 and hdistX(∂H1, ∂H2) = 1, then F ′1 ∪ F ′2 ∪ F ′3 is the
complex obtained by gluing the strip in Figure 5.3 by isomorphism along the boundary
components and gluing three half-planes of type 3-3 along three horizontal lines. Thus by
taking the flag completion we obtain the twisted triplane of type 3-3 (Figure 5.1(b)). To
see this we need to show that there is only one possible gluing of the strip in the figure
below.

Figure 5.3.

Since the horizontal lines are geodesic in X, we have to identify the vertex v with the
vertex wi for some i ∈ {0, 1, 2, 3}. Actually, there are two cases: i = 0 and i = 1 (the other
two are symmetric). In the case i = 0 the vertices a and v are connected by an edge, so by
Fact 2.2 the quadrilateral has either the diagonal ac or the diagonal bv = bw0. However,
both cases are impossible as the endpoints of these diagonals are at distance 2 in one of the
flats F ′i (which is isometrically embedded). In the case i = 1 we obtain a twisted triplane
of type 3-3.

If the half-planes are of type 2-4, then the situation is as in Figure 5.4 (since every
vertex of F ′1∪F ′2∪F ′3 belongs to at least two of the flats) – dark half-planes are H2 and H1

(contained in F ′3) and the thick horizontal line is ∂(F ′1∩F ′2). By Fact 2.2 the quadrilaterals
uiaiwiai−1 have the diagonals wiui, thus F ′1 ∪ F ′2 ∪ F ′3 is a triplane of type 2-4 (Figure
5.1(c)).
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Figure 5.4.

All constructed triplanes are isometrically embedded, as flats F1, F2 and F3 are such
and any two vertices v, w ∈ F1 ∪ F2 ∪ F3 can be connected by a geodesic contained in Fi

for some i.

Motivated by the construction of triplanes, Piotr Przytycki presented the following
short proof of the fact that a product of two finitely generated non-abelian free groups is
a systolic group (this was an open question by now).

Proposition 5.8. The product Fn × Fm, n,m ≥ 3 of two finitely generated non-abelian
free groups is a systolic group.

Proof: A finitely generated free group acts cocompactly and properly discontinuously on
a regular tree T with all vertices of degree 3. Thus Fn×Fm acts cocompactly and properly
discontinuously on T × T and the action preserves the product structure. The product
T × T has a natural structure of a cubical complex. Let us triangulate each square as in
Figure 5.5(a).

Figure 5.5.

The neighbourhood of every vertex xi is the suspension of a tripod (see Figure 5.5(b)).
We cut out every such subcomplex and glue the suspension of a triangle instead (as in
Figure 5.5(b)). We obtain a 3-dimensional complex X. Notice, that any product of an
infinite tripod in one component of T × T and a geodesic in the other component was
replaced by a triplane either of type 3-3 or of type 2-4 (compare Figure 5.1).

Since the action of Fn×Fm on T×T preserves the cubical structure (and consequently
simplicial structure) and preserves the product structure, it induces the cocompact and
properly discontinuous simplicial action of Fn×Fm on X. Thus we only need to check that
X is a systolic complex. Since X is obviously flag, it suffices to check that links at vertices
of X are 6-large. The links at vertices ci, i = 0, 1 and ai, i = 0, 1 are shown in Figure
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5.2(c) (first graph) and Figure 5.2(a), respectively. The links at vertices di, i = 0, 1, 2, 3
are shown in Figure 5.5(c). Thus all the links are 6-large.

5.2. Relative hyperbolicity

There are three different approaches to relative hyperbolicity of a finitely generated
group G with respect to a collection of its finitely generated subgroups H1, . . . , Hn. The
first one was suggested by Brian Bowditch in [Bow] in terms of dynamics of properly
discontinuous isometric actions of G on hyperbolic spaces. In [Fa] Benson Farb gave a
definition in terms of coset graphs. It was proved by François Dahmani in [Da] that
relative hyperbolicity in the sense of Bowditch implies relative hyperbolicity in the sense
of Farb (called also weak relative hyperbolicity), but not conversely. However, Farb in
[Fa] introduced an important additional condition called the Bounded Coset Property and
it turns out ([Da]), that weak relative hyperbolicity with BCP is equivalent to relative
hyperbolicity in the sense of Bowditch.

In this paper we use another approach, by Cornelia Druţu and Mark Sapir in [DS], in
terms of asymptotic cones.

Definition 5.9. ([DS], Definition 1.10) A complete geodesic metric space X is tree-graded
with respect to a family P of its closed geodesic subsets (called pieces) if the following two
properties are satisfied:

(1) Every two different pieces have at most one common point.

(2) Every simple geodesic triangle in X (i.e. a simple loop that is a concatenation of
three geodesics) is contained in one piece.

The restriction to simple geodesic triangles makes the condition (2) easier to check,
but we obtain an equivalent definition by replacing the words ‘simple geodesic triangle’
with ‘simple loop’ ([DS], Proposition 2.15).

Definition 5.10. ([DS], Definition 3.19) A metric space X is asymptotically tree-graded
with respect to a family A of its subsets if for every (non-principal) ultrafilter ω, every
sequence of scalars λ = (λn) and every observation point ? = (?n), the asymptotic cone
Coneω(X;λ, ?) is tree-graded with respect to Aω = {limωAn : An ∈ A}.

Notice that if limωλ−1
n dist(?n, An) = ∞, then limωAn = ∅, so Aω contains the empty

set. However, adding or removing the empty piece does not influence the property of being
tree-graded.

Theorem 5.11. ([DS], Theorem 8.5) A finitely generated group G is relatively hyperbolic
with respect to a collection of its subgroups H1, . . . ,Hn if and only if G is asymptotically
tree-graded with respect to the collection of cosets gHi, where g ∈ G, i = 1, . . . , n.

We use the above characterization to prove that systolic groups acting geometrically on
complexes with the Isolated Flats Property are relatively hyperbolic with respect to their
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maximal virtually abelian rank 2 subgroups (Corollary 5.14). We will need the following
technical lemma:

Lemma 5.12. ([E], Lemma 4.15(1)) Let ∆ be a systolic triangulation of a 2-disc and
γ ⊂ ∂∆ a geodesic in ∆. Denote by ∆′ ⊂ ∆ the subcomplex obtained by cutting out open
stars at every vertex v ∈ γ. Then hdist∆(∆,∆′) = 1 and ∆′ either has a disconnecting
vertex or it is a systolic disc such that γ′ = ∂∆′ \ ∂∆ is a geodesic in ∆′.

Theorem 5.13. Let X be a locally finite cocompact systolic complex with the Isolated
Flats Property and F the family of all flats in X. Then for every (non-principal) ultra-
filter ω, a sequence of scaling constants λ = (λn) and an observation point ? = (?n) the
asymptotic cone Coneω(X; λ, ?) is tree-graded with respect to Fω = {limωFn, Fn ∈ F}.
Proof:

Step 1: |F ∩ F ′| ≤ 1 for any distinct flats F, F ′ ∈ Fω.

Suppose there exist distinct flats F, F ′ ∈ Fω and distinct points x, y ∈ F ∩ F ′. Then
F = limωFn, F ′ = limωF ′n for some flats Fn, F ′n ∈ F and x = (xn), y = (yn), where xn

and yn can be taken in Fn. Choose vertices x′n, y′n ∈ F ′n such that d(xn, x′n) and d(yn, y′n)
are minimal. Connect xn with yn and x′n with y′n by allowable geodesics γn ⊂ Fn and
γ′n ⊂ F ′n, respectively. Join xn with x′n and yn with y′n by arbitrary geodesics αn and βn.
Notice that γn and γ′n are of length O(λn) and αn, βn are of length o(λn).

Let c = a(r0) + 1 where a(r0) is the constant from Lemma 5.6. By the Isolated Flats
Property diam(Nc(Fn) ∩ Nc(F ′n)) is bounded, thus we may assume (by replacing γn and
γ′n with their subgeodesics) that Nc(γn) ∩Nc(γ′n) = ∅.

Let Sn : ∆n → X be a minimal surface spanning the closed path αn ∗ γ′n ∗ β−1
n ∗ γ−1

n .
By the Gauss-Bonnet Lemma there are at most 6 internal vertices of negative defect in ∆n

(the sum of defects along each side of the quadrilateral is by Remark 3.7 at most 1 and
the defect at any of the four vertices of the quadrilateral is at most 2). Thus by the Fellow
Traveller Property and Proposition 3.8 we may assume (by replacing γn and γ′n with their
subgeodesics) that there are no internal vertices of negative defects in ∆n.

We iterate c times the following procedure:

(∗) Delete all triangles adjacent to αn. Then cut the resulting complex at every dis-
connecting vertex (if there are such) and take the component having the largest
intersection with ∂∆n.

We can prove by induction on c (using Lemma 5.12) that the obtained complex is
connected and is at o(λn)-Hausdorff distance from ∆n (as αn and βn are at distance larger
than 2c, if we obtain a complex with a disconnecting vertex in some step of the procedure,
all components but one have perimeter o(λn), thus by Lemma 3.4 in [E] they have diameter
o(λn)).

We apply the procedure (∗) iterated c times for βn, γn and γ′n, instead of αn, finally
obtaining a connected complex ∆′

n, such that hdist∆n(∆n, ∆′
n) = o(λn) and the length of

Nc(∆′
n) ∩ ∂∆n is O(λn).

Thus for every vertex v ∈ ∆′
n the ball Nc(v) ⊂ ∆n is an equilaterally triangulated

regular hexagon, so by Lemma 5.6 Sn(Nc(v)) is contained in some flat F̄ v
n . Since ∆′

n is
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connected, the flat F̄ v
n does not depend on v ∈ ∆′

n (Lemma 5.6), so Sn(∆′
n) is contained

in some flat F̄n. Therefore diam(Nc(F̄n) ∩ Nc(Fn)) = O(λn), contradicting the Isolated
Flats Property.

Step 2: Every simple geodesic triangle in Coneω(X;λ, ?) is contained in some flat F ∈ Fω.

Let a = (an), b = (bn), c = (cn) be vertices of a simple geodesic triangle in the
asymptotic cone Coneω(X;λ, ?) and α, β, γ its sides opposite to a, b and c, respectively.
By Proposition 4.4 there are sequences of geodesics αn, βn, γn in X such that limωαn = α,
limωβn = β, limωγn = γ. As the ω-limit of the closed path αn ∪ βn ∪ γn is a simple loop,
we can assume (not losing generality) that αn∪βn∪γn is a cycle in X, for i = 1, 2, . . .. By
the same argument there exists a sequence of integers ρn = o(λn) such that the geodesics

α′n = αn \ (Nρn(bn) ∪Nρn(cn))
β′n = βn \ (Nρn(cn) ∪Nρn(an))
γ′n = γn \ (Nρn

(an) ∪Nρn
(bn))

have pairwise disjoint 16c-neighbourhoods for c = a(r0) + 1, where a(r0) is the constant
from Lemma 5.6.

Denote by Sn : ∆n → X a minimal surface spanning the cycle αn ∪ βn ∪ γn (we
treat αn ∪βn ∪ γn as the boundary of ∆n, what should not cause any misunderstandings).
Then ∆n is a systolic complex (Proposition 2.4) and by the Gauss-Bonnet Lemma and
Remark 3.7 there are at most 3 internal vertices in ∆n of negative defects. Denote them
by v1

n, v2
n, v3

n. The sequence ρn can be chosen so that

max{d∆n(vi
n, an), d∆n(vi

n, bn), d∆n(vi
n, cn) : i = 1, 2, 3} 6∈ [ρn, ρn + 80c]

As by Corollary 4.10 in [HS] balls about vertices in systolic complexes are geodesically
convex, the complex

∆′
n = ∆n \ (Nρn(an) ∪Nρn(bn) ∪Nρn(cn))

is connected. Choose 1 ≤ k ≤ 16 such that

max{dist(vi
n, ∂∆′

n) : i = 1, 2, 3} 6∈ [kc, (k + 5)c]

Apply kc iterations of the procedure (∗) from Step 1 to ∆′
n, first for α′n, then for β′n

and finally for γ′n. As α′n, β′n, γ′n have pairwise disjoint kc-neighbourhoods, we obtain a
connected complex ∆′′

n ⊂ ∆′
n such that hdistX(∆′

n, ∆′′
n) = o(λn) and dist∆′n(∆′′

n, ∂∆′
n) =

kc.
Consider balls Nc(vi

n) ⊂ ∆′′
n, i = 1, 2, 3. If they are not disjoint, then either replace

two of them with a larger ball N3c(vi
n) or replace all of them with a single ball N5c(vi

n) to
obtain at most three disjoint balls, B1

n, B2
n and B3

n of radii not greater than 5c and such
that the complement

Dn = ∆′′
n \ (B1

n ∪B2
n ∪B3

n)
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is disjoint from Nc−1(vi
n), for i = 1, 2, 3. By the choice of ρn and k, these balls are disjoint

from ∂∆′′
n. Thus Dn is a disc with at most three holes, in particular it is connected.

Since the ball Nc(v) ⊂ ∆n is an equilaterally triangulated regular hexagon for every
v ∈ Dn, by Theorem 3.5 Sn restricted to Nc(v) is an isometric embedding and by Lemma
5.6(1) Sn(Nc(v)) is contained in some flat F v

n . By the connectedness of Dn and Lemma
5.6(2) the flat F v

n does not depend on v, thus the whole image of Dn is contained in some
flat Fn. As ∆n = No(λn)(Dn), the image Im Sn is contained in No(λn)(Fn), in particular
αn ∪ βn ∪ γn ⊂ No(λn)(Fn). Thus α ∪ β ∪ γ = limω(αn ∪ βn ∪ γn) ⊂ limωFn.

Corollary 5.14. Let G be a group acting properly discontinuously and cocompactly on a
systolic complex X satisfying the Isolated Flats Property. Then G is relatively hyperbolic
with respect to a collection of maximal virtually abelian rank 2 subgroups.

Proof: In Theorem 5.13 we proved that X is asymptotically tree-graded with respect to
the family F of thickenings of all flats in X (as the Hausdorff distance between a flat and
its thickening is at most 1). By Fact 5.2 there are finitely many orbits of action of G
on equivalence classes of flats in X. Choose flats F1, . . . , Fm representing the orbits and
an arbitrary vertex x ∈ X. Let K ⊂ X(0) be a (finite) set of representants of G acting
on X(0) and define q : X → G such that q(gK) = g. The map q is a quasi-isometry
and by Proposition 5.3 Stab(Th(Fi)) acts cocompactly on Th(Fi), so there is a constant
c such that hdistG(q(gFi), g · Stab(Th(Fi))) ≤ c, for g ∈ G, i = 1, . . . ,m. By Theorem
5.1 in [DS] the group G is asymptotically tree-graded with respect to q(F ) for F ∈ F , so
it is asymptotically tree-graded with respect to g · Stab(Th(Fi)), for g ∈ G, i = 1, . . . , m.
Corollary 5.4 and Theorem 5.11 complete the proof.

5.3. Relative Fellow Traveller Property

Definition 5.15. (Relative Fellow Traveller Property) Two paths γ : [0, c] → X
and γ′ : [0, c′] → X in a systolic complex X relatively δ-fellow travel if there are partitions:

0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tn = c and 0 = t′0 ≤ t′1 ≤ t′2 ≤ . . . ≤ t′n = c′

such that:

• γ(ti) and γ′(t′i) are δ-close vertices for 0 ≤ i ≤ n;

• subpaths γ([ti, ti+1]) and γ′([t′i, t
′
i+1]) are either Hausdorff δ-close or both are contained

in Nδ(Fi) for some flat Fi.

A systolic complex X has the Relative Fellow Traveller Property if for every L,C > 0
there is a constant δ = δ(L,C) such that every pair of (L, C)-quasi geodesics with common
endpoints δ-fellow travels.

Corollary 5.16. Every cocompact systolic complex X with the Isolated Flats Property,
satisfies the Relative Fellow Traveller Property.

Proof: By Theorem 5.13 X is asymptotically tree-graded with respect to a family of flats
F consisting of one flat from every equivalence class. Let L,C > 0 and p : [0, c] → X,
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q : [0, c′] → X arbitrary (L,C)-quasi geodesics in X with common endpoints. By Lemma
4.25 in [DS] there exist constants τ > 1 and M > 0, depending only on L and C, such
that p ⊂ Nτ (Sat(q)), where

Sat(q) = q ∪
⋃
{F ∈ F : F ∩NM (q) 6= ∅}

Thus there is a partition 0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tn = c, such that subpath
p[ti, ti+1] is contained either in Nτ (Fki

) or in Nτ (q). This implies that p(ti) ∈ Nτ (q), unless
p[ti−1, ti] ⊂ Nτ (Fki

) and p[ti, ti+1] ⊂ Nτ (Fki+1). However, in this case we apply Lemma
4.25 in [DS] to Sat(p(ti)), obtaining (by the Isolated Flats Property) that dist(p(ti), q) <
ψ(τM).

Hence there exist a partition 0 = t′0 ≤ t′1 ≤ t′2 ≤ . . . ≤ t′n = c′ and a constant
δ = δ(L,C) such that d(p(ti), q(t′i)) < δ and for i = 0, . . . , n− 1 either p[ti, ti+1] ⊂ Nδ(Fi)
or p[ti, ti+1] ⊂ Nδ(q). In the first case, by Lemma 4.15 in [DS], q[t′i, t

′
i+1] ⊂ Nτδ(Fi). In

the second case hdist(p[ti, ti+1], q[t′i, t
′
i+1]) < δ′ for some constant δ′, depending only on L

and C.

The following theorem summarizes the results of Section 5.

Theorem 5.17. For a systolic complex X with a cocompact and properly discontinuous
action of a group G the following are equivalent:

(1) X satisfies the Isolated Flats Property,

(2) X satisfies the Relative Fellow Traveller Property,

(3) X contains no isometrically embedded triplanes,

(4) G is relatively hyperbolic with respect to a family of maximal virtually abelian rank
2 subgroups.

Proof: We proved (1) ⇐⇒ (3) (Theorem 5.7), (1) =⇒ (2)+(4) (Corollaries 5.14 and 5.16).
To show ¬(3) =⇒ ¬(2) we need to construct for every δ > 0 two (L, C)-quasi-geodesics
in a triplane that do not δ-fellow travel. As any systolic triplane is quasi-isometric to the
metric triplane (i.e. the geodesic space obtained by gluing three Euclidean half-planes by
isometries on their boundaries) it suffices to do the construction for the metric triplane.

Figure 5.6.
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An example presented in [Hr1] is the following: concatenations xa ∗ ay and xb ∗ by
(in Figure 5.6) are two quasi-geodesics with endpoints x and y; by scaling the picture we
obtain a sequence of (L,C)-quasi geodesics pn and qn which do not n-fellow travel.

As every maximal virtually abelian rank 2 subgroup of G is equal to Stab(Th(F ))
for some flat F (Corollary 3.4) and the stabilizer acts cocompactly on Th(F ) (Proposition
5.3), condition (4) implies that X is asymptotically tree-graded with respect to some
collection of flats. Thus (4) =⇒ (3) is a consequence of Proposition 4.5 and the fact that
an asymptotic cone of a triplane is homeomorphic to a triplane.
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