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1. Introduction

Systolic complexes were introduced by Tadeusz Januszkiewicz and Jacek Świa‘tkowski
in [JS1] and independently by Frédéric Haglund in [Ha]. They are connected simply con-
nected simplicial complexes satisfying certain local combinatorial condition (see Definition
2.1 for details), which is a simplicial analogue of nonpositive curvature. Systolic complexes
have many properties similar to properties of CAT(0)-spaces; however, systolicity neither
implies, nor is implied by nonpositive curvature of the complex equipped with the piecewise
euclidean metric for which simplices are regular euclidean simplices.

In this paper we study individual isometries of a systolic space. The first result of the
paper is the following:

∗ Partially supported by Polish Ministry of Science and Higher Education (Ministerstwo Nauki i Szkol-
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Theorem 1.1. (see Theorem 3.5) If g is a (simplicial) isometry of a systolic complex X
then either g fixes a simplex or there is a gn-invariant geodesic in X for some n ≥ 1.

If an isometry g fixes a simplex σ, then the barycentre of σ is its fix-point (the isometry
is elliptic). Unfortunately, there are examples of non-elliptic isometries of systolic spaces
which do not have a g-invariant geodesic (i.e. the power n in Theorem 1.1 is necessary).

Example 1.2. Let k ≥ 2. Define a simplicial complex Ak such that such that A
(0)
k = Z

and σ ⊂ A
(0)
k spans a simplex if and only if |a − a′| ≤ k for all a, a′ ∈ σ. The complex

Ak is systolic (see Definition 2.1) and the isometry g : Ak → Ak induced by the map
Z 3 x 7→ x + 1 ∈ Z has no invariant geodesics.

The above example motivates us to introduce the concept of thick axis (which is a sub-
complex at Hausdorff distance at most 1 from a geodesic) and state the elliptic/hyperbolic
dichotomy for systolic spaces as follows:

Theorem 1.3. (see Theorem 3.9) If g is a (simplicial) isometry of a systolic complex X
then either g fixes a simplex (elliptic case) or there is a g-invariant ’thick axis’, i.e. a full
subcomplex A ⊂ X isomorphic to Ak (defined in Example 1.1) for some k ≥ 1 (hyperbolic
case).

As a corollary we obtain a proof (alternative to [JS1]) of the fact that infinite cyclic
subgroups of a group acting cocompactly and properly discontinuously on a systolic com-
plex are undistorted (see Corollary 3.10). The rest of the paper is devoted to the proof of
Theorem 1.3.

2. Systolic complexes

Let X be a simplicial complex and σ a simplex of X. The link of X at σ, denoted
Xσ, is a subcomplex of X consisting of all simplices that are disjoint from σ and together
with σ span a simplex of X.

A simplicial complex X is flag if every finite set of its vertices pairwise connected by
edges spans a simplex of X. A subcomplex Y ⊂ X is full if any simplex σ ⊂ X with all
vertices in Y is contained in Y .

A cycle in X is a subcomplex γ isomorphic to a triangulation of a circle. The length
of γ (denoted |γ|) is the number of its edges. A diagonal of a cycle is an edge joining its
two nonconsecutive vertices.

Whenever we refer to a metric on a simplicial complex, we actually mean the 1-skeleton
of the complex equipped with the combinatorial metric (i.e. the geodesic metric in which
all edges have length 1). Thus for a simplicial complex X the symbol ‘dX ’ denotes the
combinatorial metric on X(1). Moreover, referring to a geodesic in a simplicial complex
X, we mean a geodesic in X(1) having both endpoints in X(0).

Definition 2.1. (see [JS2]) A simplicial complex X is called:
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• 6-large if it is flag and every cycle γ in X of length 4 ≤ |γ| < 6 has a diagonal;

• locally 6-large if the link at every (nonempty) simplex of X is 6-large;

• systolic if it is locally 6-large, connected and simply connected.

An equivalent definition of systolicity can be obtained by replacing words ‘locally
6-large’ with ‘6-large’:

Fact 2.2. ([JS1], Proposition 1.4) Every systolic complex is 6-large. In particular, a cycle
of length smaller than 6 in a systolic complex bounds a triangulated disc with no internal
vertices.

2.1. Minimal surfaces

The main tool used in the paper is the theory of minimal surfaces in systolic complexes,
developed in [E]. A minimal surface is a simplicial map S : ∆ → X from a triangulation ∆
of a 2-disc to a systolic complex X with the property that ∆ has the minimal number of
triangles among all such maps extending S|∂∆. By Lemma 4.2 in [E] any simplicial map
f : S1 → X from a triangulated circle can be extended to a minimal surface (the extension
need not be unique) and the domain ∆ of a minimal surface is a systolic complex.

For any triangulation ∆ of a disc we define the defect at v by the following formula:

def (v) =
{

6−#{triangles in ∆ containing v}, if v /∈ ∂∆
3−#{triangles in ∆ containing v}, if v ∈ ∂∆

We call vertices (non)positive, (non)negative or zero if their defects are such. The term
‘the sum of the defects of ∆ along a boundary line l ⊂ ∂∆’ will be used to denote the sum
of the defects at all vertices of l but the endpoints.

Lemma 2.3. (Gauss-Bonnet Lemma) If ∆ is a triangulation of a 2-disc, then:

∑

v∈∆(0)

def(v) = 6.

In particular, if ∆ is a systolic triangulation, then the sum of defects at boundary vertices
is at least 6, with the equality if and only if ∆ has no internal vertices of negative defect.

The proof of Theorem 1.2 is based on the following two theorems, which summarizes
the relevant results from sections 3, 4 and 5 of [E]:

Theorem 2.4. Let X be a systolic complex and P be a triangulation of a strip R× I such
that:

(i) every vertex v ∈ ∂P has defect −1, 0 or 1;

(ii) every internal vertex v ∈ P has defect 0;

(iii) in each boundary component of P , between any two nonzero vertices of the same
sign there is a vertex of the opposite sign;
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(iv) ∂P is a full subcomplex of P .

Then any simplicial map f : P → X with the following property:

(∗) for every internal vertex v ∈ P and for every edge uw ⊂ P with both endpoints at
internal vertices f |N(v) and f |N(uw) are minimal surfaces,

maps each connected component of ∂P to a geodesic in X.

Here and subsequently N(K) denotes the subcomplex of X being the union of all
closed simplices intersecting K.

Proof: The complex P can be presented as an increasing union of simplicial discs Pn such
that any internal vertex v ∈ Pn has defect 0, any boundary vertex v ∈ Pn has defect at
least −1 and any two negative vertices on ∂Pn are separated by a positive one. By Lemma
3.5 in [E] simplicial maps f |Pn : Pn → X satisfy the assumption of Theorem 4.12 in [E].
By Proposition 4.7(2), Theorem 4.12 and Corollary 4.11(2) in [E] the intersection of Pn

with a boundary component of P is mapped by f to a geodesic in X. Since Pn ⊂ Pn+1

for n = 1, 2, . . . and P =
⋃

n Pn, each boundary component of P is mapped to a geodesic
in X.

Theorem 2.5. (see Theorem 5.2 in [E]) Let E2
4 be the triangulation of the euclidean plane

by congruent equilateral triangles, X a systolic complex and F : E2
4 → X a simplicial

map. If F |N(v) is an isometric embedding for any vertex v ∈ E2
4, then F is an isometric

embedding.

3. Classification of isometries

Let X be a systolic complex and g a (simplicial) isometry of X. Let us address first
the elliptic case.

Proposition 3.1. If g is a (simplicial) isometry of a systolic complex X and gn fixes a
simplex of X for some n ≥ 1, then g fixes a simplex of X.

Proof: Choose a vertex v ∈ X and an integer R > 0 sufficiently large so that

Y = NR(v) ∩NR(g(v)) ∩ . . . ∩NR(gn−1(v)) 6= ∅

The subcomplex Y ⊂ X is g-invariant. By Corollary 4.10 in [HS] balls around vertices in
systolic complexes are geodesically convex, so their intersection Y ⊂ X is also such. Hence
by Lemma 7.2 in [JS1] the complex Y is systolic (by Proposition 4.9 in [HS] notions of
convexity and geodesic convexity coincide). Thus Hi(Y ) = 0, for i = 1, 2, . . . (by Theorem
4.1 in [JS1] systolic complexes are contractible) and by the Lefschetz Fix-Point Theorem
the isometry g|Y : Y → Y has a fix-point y ∈ Y . Since g preserves a simplicial structure
it fixes the minimal simplex containing y.

Thus, in the subsequent part of the paper, we only need to consider free actions of Z
on systolic complexes.
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3.1. The minimal displacement

For a (simplicial) isometry g of a simplicial complex X we define the minimal dis-
placement:

|g| = min
x∈X(0)

dX(x, g(x))

The full subcomplex of X spanned by all vertices v ∈ X satisfying dX(v, g(v)) = |g| we
denote by Min(g). It is clearly non-empty. Below (Propositions 3.3 and 3.4) we prove that
Min(g) is a systolic complex and its 1-skeleton is isometrically embedded in X.

Fact 3.2. Let g be a simplicial isometry of a systolic complex X without fix-points. Choose
a vertex v ∈ Min(g), a geodesic α ⊂ X(1) joining v with g(v) and consider a simplicial path
γ : R→ X (where R is given a simplicial structure with Z as the set of vertices) being the
concatenation of geodesics gn(α), n ∈ Z. Then γ is a |g|-geodesic (i.e. d(γ(a), γ(b)) = |a−b|
if a, b are such integers that |a− b| ≤ |g|). In particular, Im(γ) ⊂ Min(g).

Proof: We prove the statement for |a−b| = |g| (this implies the general case). Then, by the
construction of γ, either γ(b) = g(γ(a)) or γ(a) = g(γ(b)), thus we have d(γ(a), γ(b)) ≥ |g|.
The opposite inequality follows from the fact that γ is a simplicial map.

Proposition 3.3. For a (simplicial) isometry g of a systolic complex X having no fix-points
the 1-skeleton of Min(g) is isometrically embedded into X.

Proof: Suppose the 1-skeleton of Min(g) is not isometrically embedded. Then there exist
vertices v, w ∈ Min(g) such that no geodesic in X with endpoints v and w is contained in
Min(g). Choose v and w so that dX(v, w) is minimal (clearly dX(v, w) > 1). Join v with
g(v), w with g(w) and v with w by geodesics α, β and ξ, respectively. Then g(v) is joined
with g(w) by g(ξ). Denote by v′ and w′ the vertices on ξ connected by edges with v and
w, respectively, as in Figure 3.1 (possibly v′ = w′).

By minimality of d(v, w) geodesics α and ξ intersect only at the endpoints, since
α ⊂ Min(g) by Fact 3.2. The same holds for geodesics α and g(ξ), β and ξ, β and g(ξ).

Suppose there is a vertex x ∈ ξ ∩ g(ξ). Then g(x) ∈ g(ξ) and g(x) 6= x, since g has no
fix-points. We may assume, not losing generality, that g(v), x, g(x) and g(w) lie on g(ξ)
in this order. Then

d(x, g(x)) = d(g(v), g(x))− d(g(v), x) = d(v, x)− d(g(v), x) ≤ d(v, g(v)) = |g|

so x ∈ Min(g), contradicting the minimality of d(v, w).
Thus geodesics α, β, ξ, g(ξ) either are pairwise disjoint but the endpoints, or α and

β have nonempty intersection. Consider the case when α and β can be chosen so that
α ∩ β 6= ∅ and let the intersection be maximal (Figure 3.1(a)). The intersection is a
geodesic with endpoints p and q. Decompose α = α′ ∪ [p, q] ∪ α′′ and β = β′ ∪ [p, q] ∪ β′′.
Let S′ : ∆′ → X be a minimal surface spanning the cycle α′ ∗ β′ ∗ ξ and S′′ : ∆′′ → X a
minimal surface spanning the cycle α′′ ∗ β′′ ∗ g(ξ).
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Figure 3.1.

Choose α, β, ξ minimizing the area of ∆′ and in the case of equal areas – minimizing
the area of ∆′′. Thus boundary vertices of ∆′ different from v, w, p have nonpositive
defects, so by the Gauss-Bonnet Lemma def∆′(v) = def∆′(w) = def∆′(p) = 2 and defects
at all other vertices of ∆′ are equal to 0. The similar calculation proves that either
def∆′′(g(v)) = 2 or def∆′′(g(w)) = 2 (defects at vertices of α′′ and β′′ different from the
endpoints are nonpositive and the sum of defects along g(ξ) does not exceed 1, as g(ξ)
is a geodesic – see Remark 3.1 in [E]). Thus either v′ with g(v′) or w′ with g(w′) can be
connected by a polygonal path of length d(v, g(v)) = d(w, g(w)) = |g|, contradicting the
assumption v′, w′ /∈ Min(g).

Now assume that we cannot chose α and β with non-empty intersection. Denote by
S : ∆ → X a minimal surface spanning the cycle α ∗ ξ−1 ∗ β ∗ g(ξ) and choose α, β
and ξ minimizing the area of ∆ (Figure 3.1(b)). Thus the defects of vertices of α and β
different from their endpoints are nonpositive. The sum of defects along the polygonal line
ᾱ composed of edges vv′ and g(v)g(v′) and a geodesic α cannot exceed 2. Otherwise either
def(v) = def(g(v)) = 2 and d(v′, g(v′)) ≤ d(v, g(v)) = |g| or def(v) = 2, def(g(v)) = 1 (or
conversely) and the defect at any vertex of α different from its endpoints is 0 – then also
d(v′, g(v′)) ≤ d(v, g(v)) = |g|. In both cases v′ ∈ Min(g), contradicting the minimality of
d(v, w). Similarly the sum of defects along the path β̄ composed of β and edges ww′ and
g(w)g(w′) does not exceed 2.

Choose a vertex x ∈ ξ (different from the endpoints). If def(x) + def(g(x)) > 0,
then at least one of the defects (say def(x)) is equal to 1 (by geodesity of ξ and g(ξ) we
have def(x) ≤ 1 and def(g(x)) ≤ 1). Modifying boundary geodesics ξ and g(ξ) by cutting
off ∆ two triangles adjacent to x and gluing their g-images to g(x) we obtain a surface
S′ : ∆′ → X, where ∆′ has the same area as ∆, but S′ is not minimal (x /∈ Min(g) implies
d(x, g(x)) > 1, so g(x) ∈ ∆′ is an internal vertex adjacent to less than 6 triangles). This
contradicts the minimality of the area of ∆ and therefore def(x) + def(g(x)) ≤ 0 for any
x ∈ ξ different from the endpoints. This with the calculation from the previous paragraph
shows that the sum of defects at vertices of ∂∆ is not greater than 4, while by the Gauss-
Bonnet Lemma it is at least 6. Hence any two vertices v, w ∈ Min(g) can be connected by
a geodesic in X contained in Min(g).

Proposition 3.4. If Y ⊂ X is a full subcomplex of a systolic complex X such that Y (1)
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is isometrically embedded into X, then Y is a systolic complex. In particular, for any
simplicial isometry g of X having no fix-points the subcomplex Min(g) is systolic.

Proof: The complex Y is 6-large (as a full subcomplex of a systolic complex) and connected
(since Y (1) ⊂ X is an isometric embedding). Thus we need only to prove that it is simply
connected.

Let γ be the shortest loop in Y (1) that is not contractible in Y . Then γ is embedded
and any subpath of γ of length not greater than 1

2 |γ| is a geodesic (as otherwise there
are vertices v, w ∈ γ disconnecting γ into subpaths γ1 and γ2 such that for a geodesic ξ
connecting v and w loops γ1 ∪ ξ and γ2 ∪ ξ are homotopically trivial, by minimality of
|γ|). Thus the loop γ can be covered by not more than 5 subpaths γ1, . . . , γ5 which are
geodesics, in such a way that every vertex of γ occurs as an internal vertex of γi for exactly
one i. It follows that for a minimal surface S : ∆ → X spanning γ, the sum of defects
at vertices of ∂∆ is at most 5 (since the sum of defects along any geodesic in ∂∆ is at
most 1 – see Remark 3.1 in [E]), contradicting the Gauss-Bonnet Lemma. Therefore, there
are no homotopically non-trivial loops in Y . The last part of the proposition follows from
Proposition 3.3.

3.2. An invariant geodesic

Theorem 3.5. Let g be a non-elliptic simplicial isometry (i.e. there are no simplices
fixed by g) of a uniformly locally finite systolic complex X . Then there is a gn-invariant
geodesic, for some n ≥ 1.

Proof: By Propositions 3.3 and 3.4 we may assume, without losing generality, that
Min(g) = X. Denote by G the cyclic group of isometries generated by g. Since gn is
non-elliptic for any n ≥ 1 (Proposition 3.1), the action of G on X is free.

Case 1: The action of G on X = Min(g) is not cocompact and |g| > 3.

Choose vertices v1, v2 ∈ X such that (|g| + 1)-neighbourhoods of the orbits Gv1 and
Gv2 are disjoint. Connect v1 with g(v1) and v2 with g(v2) by geodesics α1 and α2, re-
spectively. Let β be a geodesic connecting v1 and v2. By contractibility of X and the
relative Simplicial Approximation Theorem there exists a map p : ∆ → X, where ∆ is
a triangulation of a disc and p maps ∂∆ onto the closed path being the concatenation
α1 ∗ β−1 ∗ α2 ∗ g(β). Since |g| > 3, the quotient space X/G is a simplicial locally 6-large
complex and we obtain as a quotient of p a simplicial map f : A → X/G, where A is a
triangulation of an annulus. Now we modify A and f applying four types of operations:

(a) If there exists in A a cycle ξ of length 3 not bounding a triangle in A, then by the
assumption |g| > 3 and flagness of X/G the cycle ξ is homotopically trivial, so it
disconnects A into two components, one of them being a triangulation of a disc. By
replacing this component with a single triangle we obtain another triangulation of
an annulus.

(b) If any cycle of length 3 in A bounds a triangle and there is an internal vertex v ∈ A
adjacent to 4 or 5 triangles, we cut out the open star of v and glue the filling without
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internal vertices, instead (this is possible, since X/G is locally 6-large), obtaining
another simplicial triangulation of an annulus.

(c) If there exists an internal vertex v ∈ A with the property that f(∂N(v)) can be filled
without internal vertices, then we apply the procedure from (b) to the star of v.

(d) If there exist two internal vertices v, w ∈ A connected by an edge such that f(∂N(vw))
has a filling with at most 1 internal vertex, then we cut out the interior of N(vw)
and glue in such a filling.

As we modify A, we modify f . Since each operation lowers the number of vertices
in A, the procedure terminates. Thus we obtain a map f ′ : A′ → X/G, where A′ is a
triangulation of an annulus in which every internal vertex is adjacent to at least 6 triangles
and f ′ satisfies the condition (∗) from Theorem 2.4. The boundary ∂A′ is the disjoint
union of two circles: c1 and c2, each of length |g|. Let f̃ ′ : Ã′ → X be the universal
covering of f ′, where Ã′ is a triangulation of a strip (X̃/G = X, since by Theorem 4.1
in [JS1] systolic complexes are contractible). By the choice of α1 and α2 and by Fact 3.2
paths f̃ ′(c̃1) and f̃ ′(c̃2) are |g|-geodesics in X, so there are no vertices of defect 2 on ∂A′

and every arc in ∂A′ with both endpoints at vertices of defects +1 contains a vertex of
negative defect. Thus the sum of the defects at boundary vertices of A′ is nonpositive
and by the construction every internal vertex has a nonpositive defect. Since the Euler
characteristic of an annulus is 0, the combinatorial Gauss-Bonnet Theorem implies that
every internal vertex of A′ has defect 0 and the sum of defects at boundary vertices is equal
to 0. Hence there are no vertices of defect less than −1 on ∂A′ and every two vertices of
defect −1 on ∂A′ are separated by a vertex of defect +1. Thus the strip Ã′ satisfies the
assumptions of Theorem 2.4 (condition (iv) is fulfilled, since by the choice of v1 and v2 we
have distX(f̃ ′(c̃1), f̃ ′(c̃2)) > 3). Hence each boundary component of the strip is mapped
to a geodesic in X and by the construction it is a g-invariant geodesic.

Case 2: The action of G on X = Min(g) is not cocompact and |g| ≤ 3.

Consider a sequence of subcomplexes

X0 = X, Xn = Min Xn−1(g
n), for n = 1, 2, . . .

By Propositions 3.3 and 3.4 the subcomplex Xn ⊂ Xn−1 is a systolic g-invariant isometri-
cally embedded subcomplex. Notice, that the minimal displacement of gn in Xn satisfies

|gn|Xn = |gn|Xk
for any k > n

As G acts freely on Xn for every n and Xn is uniformly locally finite, there exists n, such
that |gn|Xn > 3. Applying Case 1 we obtain a gn-invariant geodesic l in Xn. As Xn ⊂ X
is a g-invariant and isometrically embedded subcomplex, l is a gn-invariant geodesic in X.

Case 3: The action of G on X = Min(g) is cocompact.

Since any ball in X contains a finite number of vertices (by local finiteness of X)
and diam(X) = ∞ (the action of G ∼= Z is free), there exists (by the standard diagonal
argument) a bi-infinite geodesic l in X(1).
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As G ∼= Z acts freely cocompactly on X, the space X has 2 ends. Thus there exists a
finite subcomplex B ⊂ X disconnecting X such that any bi-infinite geodesic in X intersects
B. Let n be the number of vertices in B and denote Bi := gi(B), for i = 1, 2, . . .. Then for
any i there are two geodesics among l, g(l), . . . , gn(l) with a common vertex in Bi. Hence
there are geodesics gj(l) and gj+k(l) with an infinite intersection. The same property hold
for l and gk(l). The existence of gk-invariant geodesic follows from the subsequent lemma.

Lemma 3.6. Let f be a simplicial isometry of a locally finite simplicial complex X and γ
a geodesic in X(1). If γ∩f(γ) contains infinitely many vertices, then there is an f -invariant
geodesic in X.

Proof: We construct recursively a sequence of geodesics γi, i = 0, 1, 2, . . . such that
γi ∩ f(γi) has infinitely many vertices and contains a geodesic of length at least i. Put
γ0 := γ. Suppose we have already constructed γi and [ai, bi] ⊂ γi ∩ f(γi) is a maximal
geodesic in the intersection. We may assume, not losing generality, that bi separates
f(bi) and ai on f(γi). Then ai separates bi and f−1(ai) on γi. Since γi and f(γi) have
infinite intersection, there is xi ∈ γi ∩ f(γi) such that either f(bi) separates bi and xi on
f(γi) or f−1(ai) separates ai and xi on γi. In the first case we obtain γi+1 from γi by
replacing the segment with endpoints bi and xi with the segment from f(γi) with the same
endpoints. Then there is a common segment [ai, f(bi)] ⊂ γi+1 ∩ f(γi+1). In the second
case we define f(γi+1) to be f(γi) with the segment with endpoints xi and ai replaced
with the segment of γi having the same endpoints. Then there is a common segment
[f−1(ai), bi] ⊂ γi+1 ∩ f(γi+1).

Now fix an arbitrary vertex v ∈ X. By local finiteness of X and the standard diagonal
argument we can choose a subsequence of geodesics γ′i, such that the sequences γ′i and f(γ′i)
are convergent (uniformly on compact sets) and γ′i ∩Ni(v) = f(γ′i)∩Ni(v) for i = 1, 2, . . ..
Hence both sequences converges to the same geodesic γ̄, which therefore satisfies f(γ̄) = γ̄.

Remark 3.7. If there exists a gn-invariant geodesic in X, then for any vertex x ∈
Min(gn) ⊂ X there exists a gn-invariant geodesic passing through x.

Proof: We construct a polygonal gn-invariant line l passing through x as in Fact 3.2. By
the existence of a gn-invariant geodesic and by the minimal displacement of x the triangle
inequality implies that l is also a geodesic. (see Step 3 in the proof of Theorem 6.1 in [E]
for details).

3.3. Thick axis

Fix some integer k ≥ 2. Recall that Ak is a simplicial complex with A
(0)
k = Z such

that σ ⊂ Z spans a simplex if and only if |a− a′| ≤ k for all a, a′ ∈ σ. A thick geodesic in
a systolic complex X will be the full subcomplex Ak ⊂ X, for some k ≥ 1 such that

a− a′ = jk, j ∈ Z ⇒ dX(a, a′) = dAk
(a, a′)
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Fact 3.8. A thick geodesic Ak ⊂ X is at Hausdorff distance 1 from an ordinary geodesic
in X. Any isometry of Ak which is not elliptic is of the form x 7→ x + n for some n ∈ Z.

Proof: The first follows from the fact that elements jk ∈ Ak, j ∈ Z span a geodesic in
Ak, hence in X. The second is implied by the fact that for a, a′ ∈ Z = A

(0)
k the number

|a− a′| can be described as

|a− a′| = diam
( ⋂

a,a′∈σ, dim σ=k

σ
)

where σ is a simplex in Ak.

The subsequent theorem is the main result of the paper.

Theorem 3.9. Any simplicial isometry g of a systolic complex X either fixes a simplex
(elliptic case) or fixes a thick geodesic (hyperbolic case).

Proof: By Theorem 3.5 if g is non-elliptic, then there is a gn-invariant geodesic in X,
for some n ≥ 1. Let n be minimal. If n = 1 then g is fixes ordinary geodesic (which is
isomorphic to A1), thus suppose n > 1.

Denote by E2
4 the triangulation of the euclidean plane by congruent equilateral tri-

angles.

Step 1: There exist:

(i) a group T ∼= Z2 of isometries of E2
4, generated by translations τ and σ,

(ii) a simplicial map F : E2
4 → X such that F ◦ τ = gn ◦ F and F ◦ σ = g ◦ F ,

(iii) a τ -invariant geodesic m ⊂ E2
4 such that F (m) ⊂ X is a gn-invariant geodesic.

Let l be a gn-invariant geodesic in X and denote l′ = g(l). Choose vertices x ∈ l,
x′ ∈ l′ and join them by a geodesic γ in X. Denote by α and α′ subgeodesics of l
and l′, connecting x with gn(x) and x′ with gn(x′), respectively. Let f : ∆ → X be a
simplicial map, where ∆ is a simplicial disc, such that f maps ∂∆ onto the closed path
α∗γ−1 ∗α′ ∗gn(γ) and the area of ∆ is minimal (such a map exists, since X is contractible
as a systolic complex). Let x, x′ and γ be chosen so that the area of ∆ is minimal.

Gluing maps (gn)i◦f , for i ∈ Z we obtain a gn-equivariant simplicial map f ′ : S → X,
where S is a triangulation of a strip R × I with gn acting on it by translation and such
that each boundary component of S is mapped to a geodesic in X. By systolicity of X
every internal vertex of S is adjacent to at least 6 triangles (internal vertices of ∆ ⊂ S are
such, since the area of ∆ is minimal, vertices on γ are such since γ was chosen to minimize
the area of ∆).

Choose l to be a gn-invariant geodesic minimizing the area of ∆. Denote bound-
ary components of S by m and m′ (where f ′(m) = l and f ′(m′) = l′) and define the
isomorphism p : m → m′ satisfying f ′ ◦ p = g ◦ f ′.

We prove that def(x) + def(p(x)) ≤ 0 for all vertices x ∈ m. This is immediate in the
case when |gn| = 1, as then by gn-invariance and geodesity of m and m′, any boundary

10



vertex x ∈ ∂S has a nonpositive defect. Thus assume |gn| > 1. Since m and m′ are
geodesics in S, there is no vertices on ∂S of defect 2. Consider a vertex x ∈ m ⊂ S of
defect 1. If the defect at p(x) ∈ m′ ⊂ S is nonnegative, then we can modify S by cutting out
triangles adjacent to vertices (gn)i(x) ∈ m ⊂ S (open stars of these vertices are disjoint,
as |gn| > 1), for i ∈ Z and gluing their images at vertices p((gn)i(x)) ∈ m′ ⊂ S, such that
the modified map f̄ : S̄ → X is gn-equivariant and maps ∂S to the disjoint union of two
geodesics l̄ and g(l̄). If |g| > 1 then S̄ contains a vertex adjacent to less than 6 triangles,
which contradicts the minimality of the area of ∆ (by systolicity of X). If |g| = 1, then
l and g(l) are Hausdorff 1-close and disjoint, what implies def(x) + def(p(x)) ≤ 0 for all
vertices x ∈ m, completing the proof of these inequality.

Now by the Gauss-Bonnet Lemma applied to subcomplexes of S bounded by two
distant geodesics joining m and m′ we obtain def(x) + def(p(x)) = 0 for all vertices x ∈ m
and any internal vertex v ∈ S is adjacent to exactly 6 triangles. Therefore gluing maps
gi ◦ f ′, for i ∈ Z, we obtain a simplicial map F : E2

4 → X satisfying (i)–(iii).

Step 2: Choose T , F and m satisfying conditions (i)–(iii) from Step 1 so that the number
of orbits of the action of T on the 0-skeleton of E2

4 is minimal. Then m and σ(m) are
Hausdorff 1-close.

Since the τ -invariant geodesic m ⊂ E2
4 is mapped by F to a gn-invariant geodesic

in X, any τ -invariant geodesic m̄ ⊂ E2
4 is mapped to a gn-invariant geodesic in X. This

follows from the following inequality (satisfied for all x ∈ m, x̄ ∈ m̄):

N · d(F (x̄), F (τ i(x̄))) ≥ N · d(F (x), F (τ i(x)))− 2d(F (x), F (x̄)), for any N ∈ Z
If F |N(v) was an isometric embedding for every vertex v ∈ E2

4, then by Theorem 2.5 the
map F would be an isometric embedding. However, F is not even injective, hence there is
a vertex v ∈ E2

4 such that the map F |N(v) is not an isometric embedding (so by systolicity
of X the closed path F (∂N(v)) can be filled by without internal vertices). If the distance
between m and σ(m) is greater than 1, then there is a τ -invariant geodesic m̄ disjoint from
the orbit Tv. Thus repeating the procedure from Step 1 starting with l̄ = F (m̄) instead
of l = F (m) we obtain a contradiction with the minimality of the number of T -orbits.
Therefore m and σ(m) are Hausdorff 1-close.

Step 3: If T , F and m are chosen as in Step 2, then m ⊂ E2
4 is a convex geodesic.

We introduce a coordinate system on E2
4 by choosing a vertex 0 ∈ m ⊂ E2

4 and two
edges of E2

4 with endpoint 0 forming a euclidean angle of measure π
3 – they represent base

vectors e1 and e2. Let the coordinates of the vectors
−−−→
0τ(0) and

−−−→
0σ(0) be (α, β) and (a, b),

respectively, α, β, a, b ∈ Z. We may choose e1 and e2 so that α, β ≥ 0.
We have to prove that either α = 0 or β = 0. Assume, on the contrary, that α, β > 0.

Then for any vertices p0, p1 ∈ E2
4 such that pi = (xi, yi), i = 0, 1 we have

(3.1) x0 ≤ x1 ∧ y0 ≤ y1 =⇒ dE2
4

(p0, p1) = dX(F (p0), F (p1))

since there exist integers j < k such that p0 and p1 lie in this order on a geodesic joining
τ j(0) and τk(0), and the latter vertices lie on a geodesic m which is mapped to a geodesic
in X.

11



If a, b ≥ 0 or a, b ≤ 0, then a geodesic in E2
4 passing through σk(0) = (ka, kb) for

k ∈ Z is mapped by F to a geodesic γ in X (by (3.1)) and γ ∩ g(γ) has infinitely many
vertices (since F ◦σ = g ◦F ). By Lemma 3.6 there is a g-invariant geodesic in X, contrary
to the assumption.

The only case left is when a and b are of different signs. Without loss of generality
we can assume a < 0 < b. By (3.1) the set of vertices of any geodesic joining 0 and
τ(0) = (α, β) is contained in

{xe1 + ye2 : 0 ≤ x ≤ α, 0 ≤ y ≤ β, x, y ∈ Z}.

Thus the geodesic m passing through τk(0) = (kα, kβ) for k ∈ Z is contained in

P = {xe1 + ye2 : kα ≤ x ≤ (k + 1)α, kβ ≤ y ≤ (k + 1)β, x, y, k ∈ Z}.

Since σ(m) is at Hausdorff distance 1 from m, dist(σ(0), P ) ≤ 1. There are only 6 vectors
of length 1 in E2

4: ±e1, ±e2, e1−e2, e2−e1, hence the coordinates of σ(0) = (a, b) satisfy:
a = −1 and 1 ≤ b ≤ β + 1 or b = 1 and −α− 1 ≤ a ≤ −1 (since a < 0 < b).

In the first case m would contain (0, k(b−1)) for all k ∈ N – we proceed by induction:
if the geodesic m passes through (0, j(b− 1)), 1 ≤ b ≤ β + 1, j ≥ 0, then

σ((0, j(b− 1))) = (−1, (j + 1)(b− 1) + 1)

is at distance 1 to m, what implies that m passes through (0, (j +1)(b−1))). In the second
case we similarly obtain that m would contain (k(a + 1), 0) for all k ∈ N. In both cases we
get contradiction with the assumption α, β > 0.

Now we define an infinite simplicial complex S spanned by two convex geodesics in
E2
4 at distance 1 to each other to be a thin strip (it is shown in Figure 3.2). We especially

are interested in simplicial maps f : S → X with thin strip S as a domain, such that the
images of boundary geodesics of S are geodesics gi(l) and gj(l), where 0 ≤ i < j < n. Since
geodesics gi(l) and gj(l) are disjoint (otherwise by Lemma 3.6 we obtain a gj−i-invariant
geodesic, contradicting the minimality of n), the map f is injective, so we may assume S
is a subcomplex of X. If such a map f exists, we say that gi(l) and gj(l) span a thin strip.

Let gi(l) and gj(l), 0 ≤ i < j < n, span a thin strip S. The subcomplex S′ ⊂ S
consisting of all edges e ⊂ S such that e 6⊂ ∂S is combinatorically equivalent to a line.
Thus it determines a linear order ≺ij on vertices of gi(l) ∪ gj(l). We set x ≺ gn(x) for
some, hence for every x ∈ gi(l) ∪ gj(l).

Step 4: If geodesics gi(l) and gj(l), 0 ≤ i < j < n span a thin strip S ⊂ X, then S is a
full subcomplex of X.

Since boundary lines of S are geodesic and disjoint (Lemma 3.6), S ⊂ X in not a full
subcomplex if and only if there are vertices a and x in different components of ∂S such
that dS(a, x) = 2 and dX(a, x) = 1 (as in Figure 3.2).
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Figure 3.2.

Boundary geodesics gi(l) and gj(l) are gn-invariant and gn acts on them by translation
of length ξ. Thus g2n acts by translation of length 2ξ ≥ 2. If we replace vertices g2αn(b) ∈
gi(l) with g2αn(x) ∈ gj(l), α ∈ Z we obtain a g2n-invariant geodesic l′. Since x ∈ gj(l),
gi−j(x) ∈ gi(l) and gi−j+n(x) ∈ gi(l). Vertices gi−j(x) and gi−j+n(x) are not in the
same g2n-orbit. As gi(l) \ l′ contains only one g2n-orbit, l′ passes either through x and
gi−j(x) or through x and gi−j+n(x). By Lemma 3.6 there exist gj−i-invariant geodesic or
gi−j+n-invariant geodesic, contradicting the minimality of n.

Step 5: If gi(l) and gj(l) span a thin strip and so do gj(l) and gk(l), 0 ≤ i < j < k < n,
then gi(l) and gk(l) span a thin strip. Moreover, the relation ≺ijk=≺ij ∪ ≺jk ∪ ≺ik is
transitive.

Denote strips spanned by gi(l), gj(l) and by gj(l), gk(l) by S and S′, respectively. By
gluing strips gα(k−i)(S) and gα(k−i)(S′) for α ∈ Z we obtain a simplicial map P : E2

4 → X
(as in Figure 3.3). By Lemma 3.6 the map P is nondegenerate, but it is not injective, as
S = gn(k−i)(S).

If P restricted to N(v) for any vertex v ∈ E2
4 was an isometric embedding, then by

Theorem 2.5 P would be an isometric embedding, contrary to the fact it is not injective.
Thus there is a vertex v ∈ E2

4 such that P |N(v) is not an isometric embedding. It suffices
to check two cases: v = a0 and v = w0.

Figure 3.3.

The map P |N(a0) is injective, since P |S and P |S′ are injective and geodesics gi(l)
and gk(l) are disjoint (Lemma 3.6). If P |N(a0) is not an isometric embedding, there are
two vertices in ∂N(a0) not connected by an edge in E2

4, whose images are connected by
an edge. Then, by systolicity of X, the image of ∂N(a0) can be filled with 4 triangles.
Since by Step 4 P (a−1) is not connected by an edge either with P (u1) or with P (w1) and
P (a1) is not connected by an edge either with P (u0) or with P (w0), the filling is contains
edges: P (u0)P (w0), P (u1)P (w1) and either P (w0)P (u1) or P (u0)P (w1). Without losing
generality, we may assume the last edge is P (w0)P (u1).
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By induction on j we prove that there are edges P (uj)P (wj) and P (wj)P (uj+1) in
X: If there are edges P (uj)P (wj) and P (wj)P (uj+1) then by systolicity the quadrilateral
P (wj)P (uj+1)P (aj+1)P (wj+1) has a diagonal and by Step 4 it is P (uj+1)P (wj+1); then
again by systolicity of X the pentagon P (wj+1)P (uj+1)P (uj+2)P (aj+2)P (wj+2) can be
filled with 3 triangles; thus it has a diagonal P (uj+2)P (wj+2) and either P (uj+1)P (wj+2)
or P (uj+2)P (wj+1); however, the case P (uj+1)P (wj+2) is impossible, since then proceed-
ing as in Step 4 we would obtain contradiction with minimality of n. Thus gi(l) and gk(l)
span a thin strip. The case v = w0 is analogous.

The fact that ≺ijk is transitive is now clear from Figure 3.3.

Step 6: There is a thick geodesic embedded into X.

Denote Y =
⋃n−1

i=0 gi(l). By Step 3 geodesics l and g(l) span a thin strip (since m
is a convex geodesic in E2

4 and σ(m) is 1-close to m). Thus, by Step 5 (proceeding by
induction on k) geodesics l and gk(l), 0 < k < n span a thin strip. It follows that gi(l)
and gj(l) span a thin strip for 0 ≤ i < j < n. By Step 4 Y ⊂ X is a full subcomplex. We
can introduce on the set Y (0) a relation

≺ =
⋃

0≤i<j<n

≺ij

which by Step 5 is well-defined and transitive. It also reflexive, antysymmetric and linear,
as ≺ij is such. Hence ≺ defines a linear order on Y (0). Thus we may identify Y (0) with
Z. Since for any two consecutive vertices a, a′ ∈ gi(l) and any j 6= i there is exactly one
vertex b ∈ gi(l) such that a ≺ b ≺ a′, the vertices of gi(l) are identified with kn+ ri, k ∈ Z
for some ri. It follows that vertices a ∈ gi(l) and b ∈ gj(l) are connected by an edge in X
if and only if they are identified with integers of difference ≤ n. Hence, the flag completion
of Y is a g-invariant thick geodesic in X.

Corollary 3.10. Let G be a group acting properly discontinuously and cocompactly on
some systolic complex X (a systolic group). Then any finitely generated abelian subgroup
of G is undistorted.

This fact is a consequence of Theorem 13.1 in [JS1], stating that systolic groups are
biautomatic ([JS1], Theorem 13.1). Below we present, as an application of the theory of
minimal surfaces, an alternative proof.

Proof: As a finitely generated abelian group has a finite-index free abelian subgroup, it
suffices to prove that free abelian subgroups are non-distorted. In Theorem 6.1 in [E] we
proved this for Zn, n ≥ 2 (actually, it also states that the case n > 2 is impossible).

The case n = 1 follows from Theorem 3.5: Let X be a systolic complex admitting
cocompact and properly discontinuous action of G and x ∈ X an arbitrary vertex. Then
the map g 7→ g(x) defines a quasi-isometry q : G → X. By Theorem 3.5 for any infinite
cyclic subgroup H < G there exists an H-invariant quasi-geodesic l in X, which is mapped
by the quasi-inverse of q to a quasi-geodesic k in G, such that k ⊂ G and H ⊂ G are
at finite Hausdorff distance. Thus H ↪→ G is a quasi-isometric embedding, i.e. H is
undistorted.
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