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1 Introduction

k-systolic simplicial complexes (k ≥ 6 is a natural number) were introduced by T. Januszkiewicz
and J. Świa̧tkowski in [JS] and independently by F. Haglund in [H]. These are simplicial
analogues of metric spaces of nonpositive curvature. The idea of systolicity leads to an answer
to the question posed by M. Gromov about simple easy checkable combinatorial condition for a
simplicial complex implying hyperbolicity of this complex for the standard piecewise euclidean
metric on it. In [JS] Januszkiewicz and Świa̧tkowski have shown that a 7-systolic simplicial
complex is hyperbolic.

Gromov boundaries of 7-systolic complexes were investigated by D. Osajda in [O]. He
showed that the ideal boundary ∂GX of a 7-systolic simplicial complex X is a strongly heredi-
tarily aspherical compactum. He also showed that the Gromov boundary of a normal 7-systolic
pseudomanifold of finite dimension at least 3 is connected and has no local cutpoints. In this
paper we study in detail the case of such pseudomanifolds in dimension 3.

Trees of manifolds are inverse limits of certain inverse systems of manifolds. The most
common examples of such spaces are the Pontriagin sphere and the nonorientable Pontriagin
surface. Trees of manifolds were defined and investigated by W. Jakobsche (see [J]) and by P.R.
Stallings (see [S]). These spaces occur as CAT(0) boundaries of right-angled Coxeter groups
(see [F]). In the case when these groups are hyperbolic their CAT(0) boundaries coincide with
their Gromov boundaries.

The main result of this paper is:

Main Theorem. Let X be a 7-systolic normal pseudomanifold of dimension 3. Let a group
G act geometrically on X. Then:

a) (Theorem 7.2 in the text) if X is orientable, then ∂GG is homeomorphic to the Pontriagin
sphere,

b) (Theorem 9.5 in the text) if X is nonorientable, then ∂GG is homeomorphic to the nonori-
entable Pontriagin surface.



This paper is organized as follows. In Section 2 we recall some terminology related to
simplicial complexes and systolic complexes. We also recall some facts about systolic complexes.
In Section 3 we thoroughly examine properties of combinatorial spheres Sn in 3-dimensional 7-
systolic normal pseudomanifolds and properties of natural projections Πn : Sn → Sn−1 between
them. D. Osajda showed that in the case of a locally finite 7-systolic simplicial complex X of
finite dimension the inverse limit lim

←
(Sn, Πn) of the system of these spheres and projections is

homeomorphic to the Gromov boundary ∂GX. In our case, we show that every sphere Sn is a
surface. Moreover, we show that up to a homeomorphism the sphere Sn+1 is a connected sum of
Sn and links of vertices w ∈ Sn. In Section 4 we recall results of Jakobsche from [J] on inverse
systems of compact orientable manifolds. The proof of the first statement of Main Theorem is
contained in Sections 5, 6 and 7. In Section 5 we modify the maps Πn : Sn → Sn−1 (without
changing the inverse limit lim

←
(Sn, Πn)). These maps become injective on some appropriate

parts of domains, which is one of the conditions in the definition of a Jakobsche inverse system
(which is in turn an object used to define a tree of manifolds). Properties of such modified
maps Π′n : Sn → Sn−1 allow us, in Section 6, to further modify the inverse system (Sn, Π

′
n). We

call this modifications a refinement. Every element of the refined system is a connected sum of
its predecessor and some finite number of tori. This is one of the conditions in the definition of
the Pontriagin sphere. In Section 7 we define families Dn,k of pairwise disjoint discs in surfaces
Sn,k, which turns the refined system (Sn,k, Π

′
n,k) into a Jakobsche inverse system of tori, thus

finishing the proof of part a) of Main Theorem. In Section 8 we examine properties of trees of
nonorientable surfaces. In Section 9 we prove the second statement of Main Theorem.

2 Definitions and properties of systolic complexes

In this section we recall the notion of a systolic complex and some of its basic properties.
Let X be a simplicial complex and let σ ⊂ X be a simplex. The link of X at σ (denoted

by Xσ) is the subcomplex of X consisting of all simplices disjoint with σ and spanning together
with σ a simplex in X. The residuum of σ in X (denoted by Res(σ, X)) is the union of all
simplices in X that contain σ.

For simplices σ1 and σ2 in X we denote by σ1 ∗ σ2 the simplicial join of σ1 and σ2 (if it
exists); this means that σ1 and σ2 are disjoint and σ1∗σ2 is the smallest simplex in X containing
both of them. X is flag if every set of vertices v1, v2, . . . , vn ∈ X pairwise connected by edges
in X spans a simplex v1 ∗ v2 ∗ . . . ∗ vn in X. A subcomplex K ⊂ X is full if for every set of
vertices v1, v2, . . . , vn ∈ K spanning a simplex v1 ∗ v2 ∗ . . . ∗ vn in X this simplex is a simplex in
K.

A simplicial complex X is a pseudomanifold of dimension n if it is locally finite, it is a
union of its n-simplices and each (n − 1)-simplex is contained in exactly two n-simplices. A
pseudomanifold is orientable if it admits a choice of orientations on top-dimensional simplices in
a consistent way, i.e. such that the orientations on each simplex of codimension 1 inherited from
two top-dimensional simplices containing it are opposite. An n-dimensional pseudomanifold is
normal if for every nonempty simplex σ in X of dimension dim(σ) < n − 1 the link Xσ is
connected.

Remark 2.1. Note that if a pseudomanifold is orientable then all its links are also orientable.
The converse is not true in general. However for a simply-connected normal pseudomanifolds
of dimension 3 its orientability is equivalent to the orientability of its vertex links.
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A cycle in X is a subcomplex γ ⊂ X isomorphic to some triangulation of the circle S1. The
length of a cycle γ (denoted by |γ|) is the number of its 1-simplices.

Definition 2.2. 1. Let X be a flag simplicial complex and let k ≥ 4 be a natural number.

• X is k-large if every cycle γ in X of length 3 < |γ| < k is not full in X.

• X is locally k-large if for every nonempty simplex σ in X the link Xσ is k-large.

• X is k-systolic if it is connected, simply-connected and locally k-large.

2. A group G is k-systolic if it acts geometrically (i.e. properly discontinuously and cocom-
pactly) by simplicial automorphisms on some k-systolic simplicial complex X.

For a brevity a 6-systolic complex or a group is called systolic.

Remark 2.3. Note that a full subcomplex of a k-large simplicial complex is k-large itself.

Now we recall some basic facts about systolic complexes. For proofs see [JS] and [O]. We
start with the theorem relating the notions of systolicity and Gromov hyperbolicity.

Theorem 2.4. [JS, Theorem 2.1] The 1-skeleton of a 7-systolic simplicial complex is hyperbolic.

For a subset A ⊂ X which is a union of some simplices in X we denote by spanX(A) the full
subcomplex of X spanned on A (i.e. the intersection of all full subcomplexes of X containing
A). Now we recall the definition of combinatorial balls and spheres in a simplicial complex X
centred at a simplex σ ⊂ X:

• – B0(σ, X) = σ,

– Bn+1(σ, X) = spanX

(

{τ ⊂ X : τ ∩ Bn(σ, X) 6= ∅}
)

,

• Sn(σ, X) = spanX

(

{w ∈ X(0) : d(w, σ) = n}
)

, where d(w, σ) denote the distance in the

1-skeleton X(1).

In the following proposition we recall some natural properties of balls and spheres in systolic
complexes.

Fact 2.5. [JS, Lemma 7.7] Let X be a systolic simplicial complex and let v ∈ X be a vertex.
Then for every natural number n > 0 and for every simplex τ ⊂ Sn(v, X) the intersection
ρ = Bn−1(v, X) ∩Xτ is a single simplex. Moreover, the intersection Xτ ∩ Bn(v, X) is equal to
the ball B1(ρ, Xτ ) and the intersection Xτ ∩ Sn(v, X) is equal to the sphere S1(ρ, Xτ ).

Let bτ denote the barycenter of a simplex τ and let X ′ denote the first barycentric subdivision
of a simplicial complex X. We view the barycenters bτ of simplices τ ⊂ X as the vertices of
X ′. The combinatorial properties of balls and spheres mentioned in Fact 2.5 are crucial in the
definition of projections

Πn : Sn(σ, X)→ [Sn−1(σ, X)]′

that we recall now.
For a systolic complex X and a simplex σ ⊂ X let Sn denote the sphere Sn(σ, X) and let Bn

denote the ball Bn(σ, X). Let Y (0) denote the 0-skeleton of Y , i.e. the vetrex set of a simplicial
complex Y . Define the map

Πn : S(0)
n → (S ′n−1)

(0)
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by the equalities Πn(v) = bτ for all vertices v ∈ S
(0)
n (where the simplex τ is the intersection

Bn−1 ∩Xv).
Spheres and balls in 7-systolic complexes have stronger properties than these recalled above.

The following fact allows to extend the map Πn : S
(0)
n → (S ′n−1)

(0) to a simplicial map

Πn : Sn → S ′n−1

Fact 2.6. [O, Lemma 3.1] If X is 7-systolic then, for any vertices v1, v2 ∈ Sn connected by an
edge in Sn, their images Πn(v1) and Πn(v2) are contained in one simplex in S ′n−1, i.e. Πn(v1)
and Πn(v2) are equal or they span a 1-simplex in S ′n−1.

Define the map Πn : Sn → S ′n−1 as a simplicial extension of the map Πn : S
(0)
n → (S ′n−1)

(0)

defined above.
We make now a comment about the notation used in this paper. We use the same symbol

Πn for the simplicial map Πn : Sn → S ′n−1 and for the related continuous map Πn : Sn → Sn−1

(when we forget the simplicial structure and treat the complexes Sn and S ′n−1 just as metric
spaces). For example this is the case in the following fact describing metric properties of the
maps Πn. We denote by dX the standard piecewise euclidean metric on X.

Fact 2.7. [O, Lemma 3.3] Let X be a 7-systolic complex with finite dimension. Then there is
a positive constant C < 1 depending only on the dimension dim(X) such that for all natural
numbers n and for all points x, y ∈ Sn it holds dSn−1(Πn(x), Πn(y)) ≤ C · dSn

(x, y).

In the case of 7-sytolic 3-dimensional pseudomanifolds, combinatorial properties of the in-
verse system (Sn, Πn) of spheres and projections will be thoroughly examined and described
more precisely in Section 3. The next theorem shows that this system can be used to describe
the Gromov boundary of a 7-systolic complex X.

Theorem 2.8. [O, Lemma 4.1] Let X be a 7-systolic locally finite simplicial complex of finite
dimension. For a vertex v ∈ X let Sn denote the sphere Sn(v, X) and let the maps Πn : Sn →
Sn−1 be defined as before. Then the inverse limit lim

←
(Sn, Πn) is homeomorphic to the Gromov

boundary of X.

3 Spheres and projections in 7-systolic normal pseudo-

manifolds of dimension 3

In this section X is a 7-systolic, normal pseudomanifold of dimension 3. We thoroughly examine
properties of combinatorial spheres Sn in such pseudomanifolds and of the projections Πn

defined in Section 2.
In Lemmas 3.1, 3.2 and 3.3 we describe links of X at simplices σ of the dimensions 2, 1 and

0 respectively.

Lemma 3.1. Let σ ⊂ X be a 2-simplex. Then the link Xσ consists of two vertices.

Proof: The simplex σ is contained in exactly two simplices of dimension 3.

Lemma 3.2. Let ε ⊂ X be a 1-simplex (i.e. an edge). Then the link Xε is a 7-large triangu-
lation of the circle S1 (i.e. a triangulation of the circle consisting of at least 7 edges).
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Proof: Let ε be a join v1 ∗v2. Let v ∈ Xε be a vertex. There are exactly two vertices u, w ∈ Xε

adjacent to v (since the join v ∗ v1 ∗ v2 is a 2-simplex lying in exactly two 3-simplices). Thus,
since X is locally finite, it follows that the link Xε is a disjoint union of copies of triangulated
circles. But since X is normal it follows that the link Xε is connected, so there must be exactly
one copy. Since X is locally 7-large, it follows that this triangulation of the link Xε must be
7-large.

Lemma 3.3. Let v ∈ X be a 0-simplex (i.e. a vertex). Then the link Xv is topologically a
closed connected surface triangulated in a 7-large way. Moreover, if X is orientable then the
link Xv is also orientable.

Proof: For a vertex w ∈ Xv we have the equality (Xv)w = Xv∗w. Thus the link (Xv)w

is a triangulated circle (see Lemma 3.2). A simplicial complex whose every vertex link is a
triangulated circle is itself a triangulated surface. Since X is 7-systolic, it follows that this
triangulation is 7-large. The connectedness of the link Xv follows from the normality of X.
The last assertion follows from Remark 2.1.

Combinatorial properties of 7-large complexes imply the following:

Remark 3.4. Let Σ be a 7-large triangulated closed surface and let σ ⊂ Σ be a simplex. Then:

1. the balls B1(σ, Σ) and B2(σ, Σ) are triangulated 2-discs; moreover, topological boundaries
of these balls in Σ are spheres S1(σ, Σ) and S2(σ, Σ) respectively,

2. the ball B3(σ, Σ) can contain a loop in the 1-skeleton Σ(1) homotopically nontrivial in Σ
(if the simplex σ has dimension greater than 0).

In the next lemma we describe combinatorial and topological properties of spheres Sn(v, X).

Lemma 3.5. Let v ∈ X be a vertex and let Sn = Sn(v, X) be the combinatorial sphere of radius
n centered at v. Then Sn is a connected surface triangulated in a 7-large way.

Proof: For n = 1 we have the equality S1 = Xv. Thus the assertion follows from Lemma 3.3.
Let w ∈ Sn be a vertex and let ρ denote the intersection Xw ∩ Sn−1. Since Xw is a 7-large

surface and ρ is a simplex (see Fact 2.5), by Remark 3.4 it follows that the ball B1(ρ, Xw) is a
triangulated 2-disc. By the equalities

(Sn)w = Xw ∩ Sn = S1(ρ, Xw) = bd(B1(ρ, Xw)) = S1

(see Fact 2.5) it follows that vertex links of Sn are triangulated circles. Thus Sn is a triangulated
surface.

Since Sn is full in X (by definition) and X is 7-large, it follows that this triangulation of Sn

is 7-large (see Remark 2.3).
Connectedness of Sn can be shown using inductive argument and Corollary 3.18 below.

Lemmas 3.6, 3.7, 3.8 and 3.9 describe local properties of the projections Πn+1 : Sn+1 → Sn.

Lemma 3.6. For a 2-simplex σ ⊂ Sn there is exactly one vertex wσ ∈ Sn+1 such that the join
wσ ∗ σ is a simplex in X. This vertex coincides with the preimage Π−1

n+1(bσ).
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Proof: By Fact 2.5, the intersection Xσ ∩ Sn−1 is a single simplex. Thus, for dimensional
reasons, it is a vertex. By Lemma 3.1, the link Xσ consists of two vertices. Moreover, the
intersection Xσ ∩ Sn is empty, since Sn is a surface and a full subcomplex. It follows that the
intersection Xσ ∩ Sn+1 must be equal to the other vertex of Xσ. Denote this vertex by wσ.
From definition of projections it is easy to see that Π−1

n+1[bσ] = Xσ ∩ Sn+1 (σ is a 2-simplex). It
follows that Π−1

n+1[bσ] = wσ.

Lemma 3.7. For an edge ε ⊂ Sn the intersection αε = Xε ∩ Sn+1 is an arc (triangulated). If
σ1 and σ2 are two 2-simplices in Sn containing ε, then the endpoints of this arc coincide with
the preimage vertices Π−1

n+1(bσ1) and Π−1
n+1(bσ2).

Proof: Since Sn is a surface, it follows that there are exactly two 2-simplices in Sn (say
σ1 = v1 ∗ ε and σ2 = v2 ∗ ε that contain ε. For these two simplices there are two vertices wσ1

and wσ2 in Sn+1 such that for i = 1, 2 the joins wσi
∗ σi are simplices in X.

First we show that wσ1 and wσ2 do not lie in a common simplex in X. To see this suppose
that the join wσ1 ∗ wσ2 is a simplex in X. By Fact 2.6 it follows that the images Πn+1(wσ1)
and Πn+1(wσ2) lie in a common simplex in the barycentric subdivision S ′n. Now Πn+1 maps the
vertex wσi

to the barycenter bσi
for i = 1, 2. But the barycenters bσ1 and bσ2 do not span a

simplex in S ′n, a contradiction.
Now for i = 1, 2 let a vertex ui be the intersection Xσi

∩ Sn−1. Note that since u1 and
u2 belong to the intersection Xε ∩ Sn−1, they are equal or span a simplex in Sn−1 (see Fact
2.5). Since the link Xε is a triangulated circle, and u1, u2, v1, v2 are all vertices of the link Xε

lying in the ball Bn(v, X), it follows that the vertices wσ1 and wσ2 are connected by an arc
αε = (wσ1 = w0, w1, . . . , wm = wσ2) in Sn+1 (for some m > 1). Lemma 3.6 implies that the
vertices wσi

are exactly the preimages Π−1
n+1(bσi

) for i = 1, 2. This finishes the proof.

Lemma 3.8. Let ε ⊂ Sn be an edge, let σ1 and σ2 be two different 2-simplices in Sn containig
ε and let αǫ = (w0, w1, . . . , wm) be the arc in Sn+1 given by Lemma 3.7. Then the projection
Πn+1 maps edges w0 ∗ w1 and wm−1 ∗ wm homeomorphically onto edges bσ1 ∗ bε and bσ2 ∗ bε in
S ′n respectively, and collapses the subarc (w1, w2, . . . , wm−2, wm−1) to the barycenter bε.

Proof: By Lemma 3.7, the projection Πn+1 maps w0 to the barycenter bσ1 and wm to the
barycenter bσ2 . We show that Πn+1 maps wi to the barycenter bε for i = 1, 2, . . . , m− 1. It is
enough to show that the intersection Xwi

∩ Sn is exactly equal to the edge ε.
For this note that wi and ε span a simplex in X. Thus ε is a simplex in the intersection

Xwi
∩ Sn. If this intersection contains a vertex u not contained in ε, it follows that u and ε

span a simplex in Sn. But 2-simplices in Sn containing ε are exactly σ1 and σ2. It follows that
wi is equal to w0 or to wm, a contradiction.

Lemma 3.9. Let w ∈ Sn be a vertex. Then there exists a cycle (i.e. a triangulated circle) αw

in the 1-skeleton of Xw ∩ Sn+1 such that the image Πn+1[αw] is equal to the sphere S1(w, S ′n)
(which is a cycle in the barycentric subdivision S ′n) and the preimage Π−1

n+1[S1(w, S ′n)] is equal
to αw.
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Proof: The sphere Sn is a triangulated surface, so the residuum Res(w, Sn) is a triangulated
2-disc. Let this residuum consist of 2-simplices σi = w ∗wi ∗ wi+1 for i = 0, 1, . . . , k − 1, where
k = |Xw∩Sn| ≥ 7 is the length of the link (Sn)w (indices taken modulo k). Let αi = Xw∗wi

∩Sn+1

be the arc in Sn+1 given by Lemma 3.7. Let αw be the union α0 ∪ α1 ∪ . . . ∪ αk−1. We claim
that αw is a cycle.

It is enough to show that the intersection αi ∩ αj is not empty only for |i − j| ≤ 1 and
moreover, for |i− j| = 1 it consists of one point. For this suppose that the intersection αi ∩ αj

is nonempty for some i < j ∈ {0, 1, . . . , k−1} and let u ∈ αi∩αj be a vertex. Since the arcs αi

and αj are contained in the links Xw∗wi
and Xw∗wj

respectively, it follows that simplices w ∗wi

and w ∗ wj are contained in the intersection Xu ∩ Sn. By Fact 2.5 the join wi ∗ wj ∗ w is a
simplex in Sn ∩Xu. It follows that j is equal to i + 1. Since αw is connected (the intersection
αi ∩ αi+1 is exactly the single vertex equal to the intersection Xσi

∩ Sn+1), it must be a cycle.
By Lemma 3.7 and the definition of the cycle αw it follows that Πn+1 maps αw onto S1(w, S ′n).

Since the preimage Π−1
n+1[B1(w, S ′n)] is contained in the intersection Xw ∩ Sn+1, it is enough to

show that for all vertices u ∈ Xw∩Sn+1 not contained in the cycle αw the projection Πn+1 maps
u to w. We show that the intersection Xu ∩ Sn is equal exactly to w. For this suppose that
there is another vertex, say w′, lying in the intersection Xu ∩ Sn. It follows that w′ is equal to
a vertex wi for some i = 0, 1, . . . , k− 1. Thus u lies in the arc αi, a contradiction. This finishes
the proof.

From the proof of Lemma 3.9 we get the following additional information:

Fact 3.10. Let w ∈ Sn be a vertex and let {εi : i = 1, 2, . . . , k} be the set of all edges in Sn that

contain w. Then the cycle αw is equal to the union
k

⋃

i=1

αεi
.

In the next lemma we show that the cycle αw given by Lemma 3.9 bounds some 2-disc
Dw ⊂ Xw ∩Bn+1.

Lemma 3.11. Each cycle αw bounds a 2-disc Dw = B2(σw, Xw) in the intersection Xw∩Bn+1,
for some simplex σw ⊂ Xw.

Proof: For a vertex w ∈ Sn giving the arc αw let σw be the intersection Xw ∩ Sn−1 (this
intersection is a single simplex). We show that the cycle αw is equal to the sphere S2(σw, Xw).
It is obvious that αw is contained in S2(σw, Xw). For the opposite inclusion let u ∈ S2(σw, Xw)
be a vertex. There is a vertex u′ ∈ Sn ∩Xw connected by edges with u and with some vertex
of σw. It follows that u is a vertex in the arc αw∗u′. Thus, by Fact 3.10, u is a vertex in αw.

By Remark 3.4, the cycle αw is the boundary of the ball B2(σw, Xw). Since the link Xw

is a surface (triangulated in a 7-large way), it follows that the ball B2(σw, Xw) is a 2-disc (see
Remark 3.4 again). This finishes the proof.

For a vertex w ∈ Sn let Pw denote the closure cl(Xw \Dw). Clearly, we have the following:

Fact 3.12. The set Pw is a subcomplex of Sn+1. Topologically it is a connected surface with the
boundary αw.

The next lemma describes the map Πn+1 restricted to the subcomplex Pw ⊂ Sn+1.

Lemma 3.13. For every vertex w ∈ Sn the projection Πn+1 : Sn+1 → Sn maps the subcomplex
Pw onto the ball B1(w, S ′n). Moreover, the preimage Π−1

n+1[w] is the union of simplices in Pw

disjoint with the cycle αw.
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Before proving Lemma 3.13 note the following:

Remark 3.14. • The ball B1(w, S ′n) is topologically a 2-disc with the boundary S1(w, S ′n).

• Lemma 3.13 together with previous results (Lemmas and Facts 3.8-3.12) fully describe
the restricted map Πn+1⌈Pw

.

Proof of Lemma 3.13: By Lemma 3.9, the preimage Π−1
n+1[S1(w, S ′n)] is equal to the cycle

αw. Let u ∈ Pw be a vertex not contained in the cycle αw. Since Pw is a subcomplex of the
link Xw, it follows that the vertices w and u span an edge in X. We show that the intersection
Xu ∩ Sn is equal exactly to the vertex w. It follows that Πn+1 maps u to w. It is enough to
show that the dimension dim(Xu∩Sn) is equal to 0 (since w a vertex in this intersection, which
is a single simplex).

Assume the opposite and let σ be an intersection Xu ∩ Sn. It follows that Πn+1 maps u
to the barycenter bσ. Since σ contain w and has the dimension at least 1, it follows that the
barycenter bσ is contained in the sphere S1(w, S ′n). Thus u lies in the preimage Π−1

n+1[S1(w, S ′n)].
This contradicts the equality Π−1

n+1[S1(w, S ′n)] = αw.

For better understanding of the map Πn+1 we introduce another cell structure on the sphere
Sn. We call this cell structure dual.

• The set of dual 0-cells (denoted by e0
σ) consists of the barycenters bσ of all 2-simplices

σ ⊂ Sn.

• The set of dual 1-cells (denoted by e1
ε) consists of the unions bσ1 ∗ bε ∪ bσ2 ∗ bε, where ε is

an edge in Sn while σ1 and σ2 are the two 2-simplices in Sn containing ε.

• The set of dual 2-cells (denoted by e2
w) consists of the balls B1(w, S ′n) around all vertices

w ∈ Sn.

We denote by Sd
n the cell complex related to this cell structure, and by (Sd

n)(k) its k-skeleton,
i.e. a cell subcomplex consisting of all cells of dimension at most k.

Using this dual cell structure, as a consequence of previous lemmas we get:

Lemma 3.15. 1. The preimage Π−1
n+1[e

0
σ] is the vertex wσ = Xσ ∩ Sn+1.

2. The preimage Π−1
n+1[e

1
ε] is equal to the arc αε.

3. The preimage Π−1
n+1[e

2
w] is equal to the subcomplex Pw.

Proof: Assertion 1 follows from Lemma 3.6.
By Lemma 3.8, the projection Πn+1 maps the arc αε onto the dual 1-cell e1

ε. By Lemma
3.7, the preimages of endpoints of the dual 1-cell e1

ε are exactly the endpoints of the arc αε. By
Lemma 3.9, the preimage Π−1

n+1[e
1
ε] is contained in the cycle αu for every endpoint u of ε. Let

u and u′ be two endpoints of the edge ε. Since the intersection αu ∩ αu′ is equal to the arc αε,
we get Assertion 2.

Assertion 3 follows from Lemma 3.13.

The next lemma describes the relationship between the 1-skeleton (Sd
n)(1) of the dual cell

structure on the sphere Sn and its preimage by the map Πn+1.
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Lemma 3.16. The preimage Π−1
n+1[(S

d
n)(1)] of the 1-skeleton of the dual cell structure is naturally

homeomorphic to this 1-skeleton.

Proof: The 1-skeleton (Sd
n)(1) of the dual cell structure on the sphere Sn is the union

⋃

e1
ε

of 1-cells. By Lemma 3.8 and Lemma 3.15, the map Πn+1 gives one-to-one correspondence
between the arcs αε and the dual 1-cells e1

ε. Namely, arcs αε are mapped onto dual 1-cells e1
ε.

Moreover, this correspondence is consistent with the incidence relation, i.e. the intersection
e2

u ∩ e2
u′ is nonempty if and only if the intersetion αu ∩αu′ is not empty, and the same holds for

triples of vertices. This finishes the proof.

Remark 3.17. • Note that the restriction of the map Πn+1 to the preimage Π−1
n+1[(S

d
n)(1)] is

not a homeomorphism onto (Sd
n)(1). However, it can be approximated by homeomorphisms

of the form described later in Lemma 5.2. More precisely, the map wσ → e0
σ can be

extended to a map Sn+1 → Sn such that every arc αε is homeomorphically mapped onto
the dual 1-cell e1

ε. As a consequence, the cycle αw is mapped homeomorphically onto the
boundary bd(e2

w) of the dual 2-cell e2
w.

• The sphere Sn+1, up to homeomorphism, can be thought of as obtained from the sphere
Sn by cutting the interiors of all dual 2-cells e2

w and replacing these interiors by surfaces
Pw such that each boundary bd(Pw) = αw is glued homeomorphically to the boundary
bd(e2

w).

Recall that a connected sum of the manifolds M and N of dimension n (with or without
boundaries) along n-discs D ⊂ int(M) and D′ ⊂ int(N) is the quotient space

(

(

M \ int(D)
)

∪
(

N \ int(D′)
)

)

/x∼f(x)

where f : bd(D)→ bd(D′) is a homeomorphism.
As a consequence of the second part of Remark 3.17 we have the following:

Corollary 3.18. The sphere Sn+1 is topologically a connected sum of the sphere Sn and the
links Xw of vertices w ∈ Sn along discs Dw ⊂ Xw and e2

w ⊂ Sn.

4 Inverse limits, Jakobsche spaces and outline of the

proof of Main Theorem

In this section we recall the result of Jakobsche from [J] concerning inverse systems of appro-
priately iterated connected sums of compact orientable manifolds. We use this result in the
next section.

Recall, that a family A of subsets of a metric space X is a null family if for every positive
number ǫ > 0 only finitely many elements A ∈ A have diameter greater than ǫ. The family A

is dense if the union
⋃

A is a dense subset of X.

Theorem 4.1. [J, Theorem 4.6] Let (L0
α1←− L1

α2←− L2 ←− . . .) be an inverse system of connected
closed orientable m-manifolds (m ≥ 2) and for each k ≥ 0 let Dk be a finite collection of pairwise
disjoint discs in Lk such that:

9



1. each Lk is a connected sum of finitely many copies of L0,

2. every map αk+1 restricted to the preimage

α−1
k+1

[

Lk \
⋃

{int(D) : D ∈ Dk}
]

is a homeomorphism onto the set

Lk \
⋃

{int(D) : D ∈ Dk}

3. every preimage α−1
k+1[D] (for D ∈ Dk) is homeomorphic to a copy of L0 with the interior

of a disc removed,

4. the family {αj,i[D] : i ≥ j, D ∈ Di}
1 is null and dense in Lj for all j,

5. the intersection αj,i[D]∩ bd(D′) is empty for all discs D ∈ Di, D′ ∈ Dj and for all i > j.

Then the inverse limit lim
←

(L0
α1←− L1

α2←− L2 ←− . . .) depends only on L0.

We denote this inverse limit by X(L0) and call it the Jakobsche space for L0, or the Jakobsche
tree of manifolds L0. We call a system (Lk, αk, Dk)k≥0 satisfying assumptions 1-5 of Theorem
4.1 a Jakobsche inverse system for L0. If a system (Lk, αk, Dk)k≥0 satisfies assumptions 2, 4, 5
and the condition:

3a. every preimage α−1
k+1[D] (for D ∈ Dk) is homeomorphic to a connected closed (orientable)

m-manifold with the interior of a disc removed,

than we call it a Jakobsche inverse system of (orientable) m-manifolds.

Remark 4.2. 1. Note that we did not state the result of Jakobsche in its full generality.

2. For L0 = T
2, the 2-dimensional torus, the space X(T2) is known as the Pontriagin sphere

and denoted by ΠP .

3. For m = 2 and L0 = Σg, the orientable surface of genus g > 1, the space X(Σg) is
homeomorphic to the Pontriagin sphere. Actually the tree of orientable surfaces is home-
omorphic to ΠP . We sketch some details of this in Section 8 (see Remark 8.6 (2)).

If X is a locally finite 7-systolic simplicial complex of finite dimension, then by Theorem
2.8, the Gromov boundary ∂GX is homeomorphic to the inverse limit lim

←
(Sn, Πn). The results

of Section 3 imply that the inverse system (Sn, Πn) of spheres and projections in a 7-systolic
orientable normal pseudomanifold X of dimension 3 is close to satisfy assumptions 1-5 of the
Jakobsche theorem. In the next remark we make this observation more precise.

Remark 4.3. The maps Πk are natural candidates for projections αk and the families Dk =
{

e2
w : w ∈ S

(0)
k

}

of dual 2-cells in the spheres Sk are natural candidates for families of discs as

in a Jakobsche inverse system. More precisely, Fact 2.7 implies that for such a choice of families
Dk the family {Πj,i[D] : i ≥ j, D ∈ Di} is null in every sphere Sj. Moreover, since the union
⋃

Dj covers the sphere Sj , it follows that the families {Πj,i[D] : i ≥ j, D ∈ Di} are dense in

1For i > j we denote by αj,i the composition αj+1 ◦ . . . ◦ αi, whereas αi,i denotes the identity on Li.
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every sphere Sj. If the links of all vertices of X are triangulations of the same surface Σ0, then
assumptions 1 and 3 are satisfied with L0 = Σ0 by Lemma 3.15 (3).
On the other hand, the maps Πk and the families Dk defined as above fail to satisfy some other
assumptions of the Jakobsche theorem. In particular:

• elements of so defined families Dk are not pairwise disjoint,

• even though the projection Πk+1 maps the preimage

Π−1
k+1

[

Sk \
⋃

{

int(e2
w) : w ∈ S

(0)
k }

]

onto the set
Sk \

⋃

{

int(e2
w) : w ∈ S

(0)
k

}

the restriction of Πk+1 to this preimage is not a homeomorphism, and

• assumption 5 of Theorem 4.1 fails.

The strategy of the proof of part a) of Main Theorem is as follows. In Section 5 we modify
the inverse system (Sn, Πn), without affecting the inverse limit, by changing appropriately the
bonding maps. This modification will make the inverse system satisfy assumptions 2, 4 and 5 of
Theorem 4.1 (after choosing appropriately the families of discs). The modified inverse system
(Sn, Π′n) (with families of discs choosen appropraitely) will be a Jakobsche inverse system of
orientable surfaces. In Section 6 we refine this new system without changing the inverse limit
either. The refined system will consist of orientable surfaces Sn,k for k = 0, 1, . . . , gn (for some
natural numbers gn) and maps Π′n,k+1→k : Sn,k+1 → Sn,k satisfying Sn,0 = Sn, Sn,gn

= Sn+1 and
Π′n,1→0 ◦Π

′
n,2→1 ◦ . . .◦Π

′
n,gn→gn−1 = Π′n+1. The refinement is necessary to get the connected sum

with tori, rather than with higher genera surfaces. In Section 7 we define the family of discs in
every surface of the refined system to match all the assumptions of Theorem 4.1.

5 Modification of the inverse system

In this section we modify the inverse system (Sn, Πn) described in Section 3. Actually, we modify
only the projections Πn : Sn → Sn−1 leaving the spaces Sn unchanged. This modification will
be small enough so that it does not change the inverse limit. The new inverse system (Sn, Π

′
n)

will satisfy the following conditions:

• each of the modified projections Π′n+1 maps the preimage Π−1
n+1[(S

d
n)(1)] homeomorphically

onto the 1-skeleton (Sd
n)(1) of the dual cell structure on the sphere Sn,

• for every vertex w ∈ Sn the projection Π′n+1 maps some canonical open neighbourhood
Uw of the cycle αw in Pw homeomorphically onto the 2-cell e2

w with the point w removed,
and collapses the complement Pw \ Uw to w.

We denote by dsup the uniform metric on the set of continuous maps between two compact
spaces. We perform small (with respect to the uniform distance) modifications of the maps Πn

keeping the inverse limit unchanged. To do this we use the following result due to M. Brown.
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Theorem 5.1. [B, Theorem 2] There is an assignment of positive real numbers

a(s1, s2, . . . , sk−1, t1, t2, . . . , tk−1, tk)

to pairs of finite sequences

(X0
s1←− X1

s2←− . . .
sk−1
←−− Xk−1) and (X0

t1←− X1
t2←− . . .

tk−1
←−− Xk−1

tk←− Xk)

of continuous maps between compact metric spaces, for all integer k, such that the following

holds: if two inverse systems (Y0
α1←− Y1

α2←− . . .) and (Y0
β1
←− Y1

β2
←− . . .) satisfy the inequalities

dsup(αk, βk) < a(α1, α2, . . . , αk−1, β1, β2, . . . , βk−1, βk)

for all k, then the inverse limits lim
←−

(Y0
α1←− Y1

α2←− . . .) and lim
←−

(Y0
β1
←− Y1

β2
←− . . .) are homeo-

morphic.

The next lemma shows that it is possible to approximate the projections Πn+1 : Sn+1 → Sn

arbitrarily close by maps Πn+1,ǫ : Sn+1 → Sn having much better properties (from the point of
view of fullfilling the requirements of Jakobsche inverse system).

Lemma 5.2. For any number ǫ > 0 and any integer n > 0 there is a continous map
Πn+1,ǫ : Sn+1 → Sn satisfying the following:

1. dsup(Πn+1, Πn+1,ǫ) < ǫ,

2. Π−1
n+1[w] = (Πn+1,ǫ)

−1[w] =
(

Xw \ B3(σw, Xw)
)

∪ S3(σw, Xw) for all vertices w ∈ S
(0)
n

(where σw is the intersection Xw ∩ Sn−1),

3. the restriction of the map Πn+1,ǫ to the set

Sn+1 \
⋃

{

(Πn+1,ǫ)
−1[w] : w ∈ S(0)

n

}

is a homeomorphism onto the set

Sn \ {w : w ∈ S(0)
n },

4. Πn+1[S
(0)
n+1] ⊆ Πn+1,ǫ[S

(0)
n+1].

Proof:
Let w ∈ Sn be a vertex. Let lw denote the number of 2-simplices in Sn that contain w. For

i = 0, 1, . . . , lw − 1 let σi = w ∗ wi ∗ wi+1 be all these 2-simplices (indices taken modulo lw).
Consider the cycle αw ⊂ Sn+1 as described in Lemma 3.9. Denote vertices of αw in the

following way:

w0,0, w0,1, . . . , w0,k0 = w1,0, w1,1, . . . , w1,k1 = w2,0, . . . , wlw−1,0, . . . , wlw−1,klw−1
= w0,0

(for some natural numbers k0 > 1, . . . , klw−1 > 1). We choose the indices in such a way that
Πn+1(wi,0) = bσi

, Πn+1(wi,j) = bσi∩σi+1
for 0 < j < ki and succesive vertices are connected by

an edge.
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Consider 2-simplices in Pw intersecting αw. Denote these 2-simplices in the following way
(see Figure 5, note that this figure does not exhibit the geometry of the subcomplex Pw, in fact
all simplices have sizes of length 1):

w0,0∗w0,0,1∗w0,0,2 , w0,0∗w0,0,2∗w0,0,3 , . . . , w0,0∗w0,0,m0,0−1∗w0,0,m0,0 , w0,0∗w0,1∗w0,0,m0,0 ,

w0,1 ∗ w0,1,1 ∗ w0,1,2 (where w0,1,1 = w0,0,m0,0), . . . , w0,k0−1 ∗ w0,k0 ∗ w0,k0−1,m0,k0−1
,

w1,0 ∗ w1,0,1 ∗ w1,0,2 (where w1,0 = w0,k0 and w1,0,1 = w0,k0−1,m0,k0−1
), . . . ,

wlw−1,k(lw−1)−1 ∗ wlw−1,k(lw−1)−1,0 ∗ wlw−1,k(lw−1)−1,1 , . . . ,

wlw−1,k(lw−1)−1 ∗ wlw−1,k(lw−1)−1,mlw−1,k(lw−1)−1−1 ∗ wlw−1,k(lw−1)−1,m[lw−1,k(lw−1)−1]
,

wlw−1,k(lw−1)
∗ w0,0 ∗ w0,0,1 (where wlw,klw

= w0,0 and wlw−1,k(lw−1)−1,m[lw−1,k(lw−1)−1]
= w0,0,1 ).

For two points x and y lying in a single simplex we denote by [x, y] the interval connecting
them.

For i = 0, 1, . . . , lw−1 choose points ai, bi, ci, di in the following way: ai ∈ [wi,0, wi−1,k(i−1)−1]
with d(ai, wi−1,k(i−1)−1) = ǫ, bi ∈ [wi,0, wi−1,k(i−1)−1] with d(ai, wi,0) = ǫ, ci ∈ [wi,0, wi,1] with

d(ci, wi,0) = ǫ, di ∈ [wi,0, wi,1] with d(di, wi,1) = ǫ. For s ∈ [0,
√

3
2

] and i = 0, 1, . . . , lw − 1
choose points as

i , b
s
i , c

s
i , d

s
i in the following way: as

i ∈ [wi,0,1, ai] with d(as
i , [wi,0, wi−1,ki−1−1]) = s,

bs
i ∈ [wi,0,1, bi] with d(bs

i , [wi,0, wi−1,ki−1−1]) = s, cs
i ∈ [wi,0,mi,0

, ci] with d(cs
i , [wi,0, wi,1]) = s,

ds
i ∈ [wi,0,mi,0

, di] with d(ds
i , [wi,0, wi,1]) = s. For s ∈ [0,

√
3

2
], i = 0, 1, . . . , lw−1, j = 0, 1, . . . , ki−1

and k = 1, . . . , mi,j choose points es
i,j,k ∈ [wi,j, wi,j,k] with d(es

i,j,k, [wi,j,k, wi,j,k+1]) =
√

3
2
− s.

For i = 0, 1, . . . , lw − 1 let a′i = Πn+1(ai), b′i = Πn+1(bi), c′i = Πn+1(ci) and d′i = Πn+1(di).

For i = 0, 1, . . . , lw − 1 and s ∈ [0,
√

3
2

] let a′i
s = Πn+1(a

s
i ), b′i

s = Πn+1(b
s
i ), c′i

s = Πn+1(c
s
i ),

d′i
s = Πn+1(d

s
i ), e′i

s = Πn+1(e
s
i,0,k) and e′i,i+1

s = Πn+1(e
s
i,j,k) (for j > 0).

For each i = 0, 1, . . . , lw − 1 choose and fix vertices wii,ji
∈ {wi,1, . . . , wi,ki−1} and wii,ji,ki

∈
{wii,ji,1, . . . , wii,ji,mii,ji

} (vertices wii,ji
will be mapped onto the barycenters bw∗wi+1

in order to
fulfill the condition 4).

Define the map Πw,ǫ
n+1 : Pw → Sn as follows:

• Πw,ǫ
n+1(x) = Πn+1(w) for w ∈ [wi,0,1, ai, bi], w ∈ [wi,0,mi,0

, ci, di] and for x ∈ Π−1
n+1[w],

• for s ∈ [0,
√

3
2

] and i = 0, 1, . . . , lw−1 let Πw,ǫ
n+1 : [bs

i , e
s
i,0,1]∪[es

i,0,1, e
s
i,0,2]∪. . . ,∪[es

i,0,mi,0
, cs

i ]→
[b′si , e′si ] ∪ [e′si , c′si ] be linear (with respect to the length of segments),

• for s ∈ [0,
√

3
2

] and i = 0, 1, . . . , lw−1 let Πw,ǫ
n+1 : [ds

i , e
s
i,1,1]∪[es

i,1,1, e
s
i,1,2]∪. . .∪[es

ii,ji,ki−1, e
s
ii,ji,ki

]→
[d′si , e′si,i+1] and Πv,ǫ

n+1 : [es
ii,ji,ki

, es
ii,ji,ki+1]∪ . . .∪ [es

i,ki−1,mi,ki−1
, as

i+1]→ [e′si,i+1, a
′s
i+1] be linear.

Note that Πw,ǫ
n+1 is a well defined continuous map. Note also that with vertices wiiw ,jiw

chosen
in a coherent way (i.e. for two adjancent wertices w, w′ ∈ Sn the chosen wertices wiiw ,jiw

and

wii
w′

,ji
w′

lying on the arc αw∗w′ must coincide) the map Πǫ
n+1 =

⋃

w∈S
(0)
n

Πw,ǫ
n+1 : Sn+1 → Sn is well

defined and satisfies the required condition. We omit further details.
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Figure 1: Proof of Lemma 5.2
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In the next lemma we define a sequence of maps (Π′n+1 : Sn+1 → Sn)n≥1 such that the

inverse limits lim
←

(S1
Π2←− S2

Π3←− S3 . . .) and lim
←

(S1
Π′

2←− S2
Π′

3←− S3 . . .) are homeomorphic. The

new inverse sytem (Sn, Π
′
n) satisfies the conditions mentioned at the beginning of this section.

As we will show later, after refinement of this new system, we will be able to define the families
of discs Dn,k such that the refined system (Sn,k, Π

′
n,k, Dn,k) will become a Jakobsche inverse

system for the torus.

Lemma 5.3. There is a sequence of continuous maps (Π′n+1 : Sn+1 → Sn)n≥1 such that:

1. the inverse limits lim
←

(S1
Π2←− S2

Π3←− S3 . . .) and lim
←

(S1
Π′

2←− S2
Π′

3←− S3 . . .) are homeomor-

phic,

2. Π−1
n+1[w] = (Π′n+1)

−1[w] =
(

Xw\B3(σw, Xw)
)

∪S3(σw, Xw) for all vertices w ∈ S
(0)
n (where

σw is the intersection Xw ∩ Sn−1) ,

3. the restriction of the map Π′n+1 to the set

Sn+1 \
⋃

{

(Π′n+1)
−1[w] : w ∈ S(0)

n

}

is a homeomorphism onto the set

Sn \ {w : w ∈ S(0)
n }

4. Πn+1[S
(0)
n+1] ⊂ Π′n+1[S

(0)
n+1]

Proof: Inductively we define a sequence of maps (Π′n : Sn → Sn−1)n≥2 and a decreasing
sequence of positive numbers (ǫn)n≥2 such that:

• for each natural number n > 1 the map Π′n satisfies conditions 2, 3 and 4,

• dsup(Πn, Π′n) < ǫn, with ǫn < a(Π′2, Π
′
3, . . . , Π

′
n−1, Π2, Π3, . . . , Πn), where the latter are the

positive numbers given by the Brown theorem.

Let ǫ2 be a positive number satisfying 0 < ǫ2 < a(Π2) and let a map Π′2 : S2 → S1 satisfy
conditions 2, 3 and 4 and the inequality dsup(Π2, Π

′
2) < ǫ2. Such a map exists due to Lemma

5.2. Note that we can additionally assume that ǫ2
1

1−C
< 1 where C < 1 is a positive constant

given by Fact 2.7. This property will be used in the proof of Lemma 9.4.
Suppose now that we have defined positive numbers ǫ2 > . . . > ǫn satisfying the inequalities

ǫk < a(Π′2, Π
′
3, . . . , Π

′
k−1, Π2, Π3, . . . , Πk)

for k = 2, 3, . . . , n and maps Π′2, Π
′
3, . . . , Π

′
n satisfying the required conditions and the inequal-

ities dsup(Πk, Π
′
k) < ǫk for k = 2, 3, . . . , n. Let ǫn+1 < ǫn be a number satisfying

0 < ǫn+1 < a(Π′2, Π
′
3, . . . , Π

′
n, Π2, Π3, . . . , Πn+1)

and let Π′n+1 : Sn+1 → Sn be a map satisfying conditions 2, 3 and 4 and the inequality
dsup(Πn+1, Π

′
n+1) < ǫn+1. Such a map exists again due to Lemma 5.2.

Now the sequence (Π′n)n>1 satisfies conditions 2, 3 and 4. Moreover, by the Brown theorem,

the inverse limits lim
←

(S1
Π2←− S2

Π3←− S3 . . .) and lim
←

(S1
Π′

2←− S2
Π′

3←− S3 . . .) are homeomorphic.
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6 Refinement of the inverse system

In this section X is orientable. Recall that it follows that vertex links Xu are orientable surfaces
(see Remark 2.1). We refine the inverse system (Sn, Π

′
n). The refinement does not change the

inverse limit, and the refined system (Sn,k, Π
′
n,k) will have the property that every surface Sn,k+1

will be a connected sum of its predecessor Sn,k and a finite number of tori.
As it will be made clear in Section 7, the inverse system (Sn, Π

′
n), after appropriate choice

of families Dn of discs in Sn, fulfills assumptions 2, 4 and 5 of Theorem 4.1. Preimages of the
chosen discs under the bonding maps Π′n+1 will correspond to surfaces that are links of X at
vertices of Sn.

Two phenomena may appear that prevent the system (Sn, Π
′
n) from satisfying assumptions

1 and 3 of the Jakobsche theorem for L0 = T
2. The first one is that links at vertices do not

have to be surfaces of the same genus. The second phenomenom is that even since all vertex
links are homeomorphic, they may be surfaces of genus greater than 1.

Using the following two lemmas we will be able to refine the system (Sn, Π
′
n) to overcome

these difficulties. We start with some terminology.

Definition 6.1. Let f : Σ → Σ′ be a map between compact orientable surfaces and let
D = {D1, D2, . . . , Dl} be a family of pairwise disjoint discs Di ⊂ Σ′. We say that f collapses
Σ to Σ′ along the family D if:

• Σ is a connected sum of Σ′ and a finite number of surfaces Σg1 , Σg2, . . . , Σgl
of genera

g1 > 0, g2 > 0, . . . , gl > 0 respectively (for some l > 0) along discs Di ⊂ Σ′ and D′i ⊂ Σgi

for i = 1, 2, . . . , l,

• f(x) = x for all x ∈ Σ′ \
(

l
⋃

i=1

int(Di)
)

,

• there are open neighbourhoods Ui of bd(D′i) in Σgi
\ int(D′i) and points xi ∈ int(Di) such

that f maps homeomorphically Ui onto Di \ {xi} and collapses (Σgi
\ int(D′i)) \ Ui to xi.

We call such a map a collapsing map. If it is clear which family D we mean, we say that f
collapses Σ to Σ′.

Note that the maps Πn,ǫ from Lemma 5.2, and hence the maps Π′n from Lemma 5.3, are
examples of collapsing maps.

We state without the proofs two obvious lemmas which we use in the refinement procedure.

Lemma 6.2. Let Σ be an orientable surface of genus g > 1. Then there exist orientable surfaces
Σ1, Σ2, . . . , Σg = Σ, discs Di ⊂ Σi (for i = 1, 2, . . . , g − 1) and maps fi : Σi → Σi−1

(for i = 2, 3, . . . , g) such that:

• Σi is an orientable surface of genus i for i = 1, 2, . . . , g,

• Σi is a connected sum of Σi−1 and a torus T 2
i−1 along the disc Di−1 and some disc

D′i−1 ⊂ T 2
i−1 such that the disc Di is contained in the complement T 2

i−1 \ D′i−1 and the
map fi collapses Σi to Σi−1 along a one-element family Di−1 = {Di−1}.

Lemma 6.3. Let f : Σ→ Σ′ collapse an orientable surface Σ to an orientable surface Σ′ along
a family D = {D1, . . . , Dl}. Let Σg1 , Σg2 , . . . , Σgl

be orientable surfaces as in Definition 6.1.
For i = 1, 2, . . . , l let D′i ⊂ Σgi

be discs as in Definition 6.1. Let the genus gj of the surface Σgj

be greater than 1 for some j ∈ {1, 2, . . . , l}. Then there exist:
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• a decomposition of Σgj
to a connected sum of two orientable surfaces Σg′j

and Σg′′j
of

genera g′j = 1 and g′′j = gj − 1 respectively (i.e. Σg′j
is a torus) along discs D′′j ⊂ Σg′j

and D′′′j ⊂ Σg′′j
such that the disc D′j is contained in the surface Σg′j

and the intersection

D′′j ∩D′j is empty,

• a surface Σ′′, which is a connected sum of Σ′ and Σg1, . . . , Σgj−1
, Σg′j

, Σgj+1
, . . . , Σgl

along

discs Di and D′i respectively,

• maps f1 : Σ→ Σ′′ and f2 : Σ′′ → Σ′

such that f1 collapses Σ to Σ′′ along the family {D′′j }, f2 collapses Σ′′ to Σ′ along the family D,
and f = f2 ◦ f1.

Remark 6.4. Note that Lemma 6.2 and Lemma 6.3 are also true for nonorientable surfaces.
The only difference is that collapsing maps are related to connected sums with projective planes
rather than with tori.

As an immediate consequence we get the following:

Corollary 6.5. For n ≥ 1 let the map Π′n+1 : Sn+1 → Sn be defined as before. For each vertex
w ∈ (Sn)(0) denote by gw the genus of the link Xw (which is a closed orientable surface). Let
gn = max{gw : w ∈ (Sn)(0)}. Then there exist surfaces

Sn = Sn,0, Sn,1, . . . , Sn,gn
= Sn+1

and maps

Sn,0

Π′

n,1→0
←−−−− Sn,1

Π′

n,2→1
←−−−− Sn,2

Π′

n,3→2
←−−−− . . .

Π′

n,gn−1→gn−2
←−−−−−−−− Sn,gn−1

Π′

n,gn→gn−1
←−−−−−−− Sn,gn

such that:

• Sn,k is a connected sum of Sn,k−1 and some tori Tn,k,1, Tn,k,2, . . ., Tn,k,mn,k
(for some

natural number mn,k ≥ 1) along pairwise disjoint discs

Dn,k,1 ⊂ Sn,k−1 , Dn,k,2 ⊂ Sn,k−1 , . . . , Dn,k,mn,k
⊂ Sn,k−1

and
D′n,k,1 ⊂ Tn,k,1 , D′n,k,2 ⊂ Tn,k,2 , . . . , D′n,k,mn,k

⊂ Tn,k,mn,k

respectively,

• every disc Dn,k+1,i is contained in some torus Tn,k,j and is disjoint with the disc D′n,k,j,

• for each n > 0 and each k = 1, 2, . . . , gn the map Π′n+1,k→k−1 collapses Sn,k to Sn,k−1 along
the family {Dn,k,i : i = 1, 2, . . . , mn,k},

• Π′n+1 = Π′n,gn→0 (where Π′n,gn→0 denote the composition Π′n,1→0 ◦Π
′
n,2→1 ◦ . . .◦Π

′
n,gn→gn−1).
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Corollary 6.5 gives the refined inverse system of orientable surfaces

(S1

Π′

1,1→0
←−−−− S1,1

Π′

1,2→1
←−−−− . . .

Π′

1,g1→g1−1

←−−−−−− S2

Π′

2,1→0
←−−−− . . .)

In this inverse system every surface is a connected sum of its predecessor and a finite number
of tori (possibly only one). If the genus of the sphere S1 is greater than 1, we use Lemma 6.2
for the sphere S1 to get the inverse system

(S0

Π′

0,1→0
←−−−− S0,1

Π′

0,2→1
←−−−− . . .

Π′

0,g0→g0−1

←−−−−−− S1

Π′

1,1→0
←−−−− . . .)

with S0 a torus. We don’t do this if S1 is a torus.
The last condition of Corollary 6.5 implies that the refining of the inverse system does not

change the inverse limit. Thus we get the following:

Corollary 6.6. Suppose that X is a 7-systolic normal orientable pseudomanifold of dimension
3. Then the Gromov boundary ∂GX is homeomorphic to the inverse limit of the refined inverse

system lim
←

(S0

Π′

0,1→0
←−−−− S0,1

Π′

0,2→1
←−−−− . . .

Π′

0,g0→g0−1
←−−−−−− S1

Π′

1,1→0
←−−−− S1,1

Π′

1,2→1
←−−−− . . .)

(lim
←

(S1

Π′

1,1→0
←−−−− S1,1

Π′

1,2→0
←−−−− . . .) if S1 is a torus).

7 Getting the structure of a Jakobsche inverse system

In this section we continue considerations of the previous one, under the same assumption
that X is orientable. We define some finite families Dn,k of pairwise disjoint discs in every
surface Sn,k. The inverse system (Sn,k, Π

′
n,k) with families Dn,k will satisfy all assumptions of

the Jakobsche theorem, with L0 = T
2.

To define these families we need some preparations. For n = 0, 1, . . . let An ⊂ Sn be defined
as An = {Π′n,l(w) : l ≥ n, w ∈ S

(0)
l } and let An,k be the image Π′n,gn→k[An+1] ⊂ Sn,k of the set

An+1, where Π′n,l : Sn → Sl and Π′n,gn→k : Sn+1 → Sn,k are the compositions Π′l+1 ◦ . . . ◦Π′n and
Π′n,k+1→k ◦ . . . ◦ Π′n,gn→gn−1 respectively.

Lemma 7.1. An is a countable dense subset of Sn for all n ≥ 1, and An,k is a countable dense
subset of Sn,k for all n ≥ 0 and all k = 0, 1, . . . , gn.

Proof: Recall that every map Πi is a C-contraction and the 0-skeleton S
(0)
i is a finite 1-net in

the sphere Si for all numbers i. It follows that the set {Πn,l(v) : v ∈ S
(0)
l } is a finite C l−n-net

in Sn. Since the maps Π′i satisfy the condition Πi[S
(0)
i ] ⊂ Π′i[S

(0)
i ] (see assertion 4 of Lemma

5.3) it follows that the assertion holds for the sets An. Since the set An,k is the image of the
countable dense set An+1 by a surjection, it is itself countable and dense.

Now we define inductively families of discs Dn and Dn,k in the spheres Sn and Sn,k respec-
tively to match all assumptions of Theorem 4.1.

Suppose the genus of the sphere S1 is equal to 1 (i.e. the sphere S1 is a torus). Let

D1 = {Dw : w ∈ (S1)
(0)}

be a family of pairwise disjoint discs such that w ∈ int(Dw) with diameters diam(Dw) < 1
2

and such that the intersections bd(Dw) ∩ A1 are empty. Note that since every disc is a union
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of uncountable family of disjoint circles and a point (just take a homeomorphism to the unit
plane disc and circles of radius r ∈ (0, 1] centred at 0), it follows that such discs exist.

If the sphere S1 has genus greater then 1, then as in Corollary 6.6 we start with the surface
S0. Let D0 be a family consisting of one small 2-disc D in S0 (contained in the disc D0,0 as
in Lemma 6.2 and satisfying the inequality diam(D) < 1), with x ∈ int(D) (where a point
x ∈ int(D0,0) and a disc D0,0 are given by the fact that the map Π′0,1→0 : S0,1 → S0 is a
collapsing map). Again we can assume that the intersection bd(D) ∩ A0 is empty.

Now suppose we have defined the families D0, . . . , Dn−1 and Di,j for all i ≤ n − 1 and

j = 0, 1, . . . , gi. We define the family Dn as follows. For every vertex u ∈ S
(0)
n we choose a

small 2-disc Du containing u in its interior such that:

• the discs Du are pairwise disjoint,

• the intersection bd(Du) ∩ An is empty for all vertices u ∈ S
(0)
n ,

• the intersection Π′i,n[Du] ∩ bd(D′) is empty for all i < n and for all discs D′ ∈ Di,

• the intersection Π′i,gi→j ◦Π
′
i+1,n[Du]∩bd(D′) is empty for all i < n, all j = 0, 1, . . . , gi and

for all discs D′ ∈ Di,j,

• diamSi
(Π′i,n[Du]) < 1

2n for all i < n,

• diamSi,j
(Π′i,gi→j ◦Π′i+1,n[Du]) < 1

2n for all i < n and all j = 1, 2, . . . , gi.

It is possible to choose such a family Dn. To see this consider a point a = Π′i,n(u) ∈ Ai. This
point is not contained in the boundary bd(D′) of any disc D′ ∈ Di. Analogously, any point
a = Π′i,gi→j ◦ Π′i+1,n(y) ∈ Ai,j is not contained in the boundary bd(D′) of any disc D′ ∈ Di,j.
Thus for small enough ǫ > 0 the intersection Π′i,n[BSn

(u, ǫ)] ∩ bd(D′) is empty for all discs
D′ ∈ Di and the intersection Π′i,gi→j ◦Π′i+1,n[BSn

(u, ǫ)]∩ bd(D′) is empty for all discs D′ ∈ Di,j

(there are only finitely many such discs D′). Since Sn is a surface, the metric ball BSn
(u, ǫ)

contains a 2-disc Du containing u in its interior. Again we can assume that the intersection
bd(Du) ∩An is empty.

Now suppose we have defined the families D0, D1, . . . , Dn, the families Di,j for all i < n and
j = 0, 1, . . . , gi and the families Dn,j for all j < k. We define the family Dn,k as follows. For
all points xn,k,l given by the fact that the map Π′n,k+1→k : Sn,k+1 → Sn,k is a collapsing map let
Dn,k,l be a small disc in Sn,k containing xn,k,l in its interior such that:

• the discs Dn,k,l are pairwise disjoint,

• the intersection bd(Dn,k,l) ∩An,k is empty for all l,

• the intersection Π′i,n ◦ Π′n,k→0[Dn,k,l] ∩ bd(D′) is empty for all i < n and for all discs
D′ ∈ Di,

• the intersection Π′i,gi→j ◦ Π′i+1,n ◦ Π′n,k→0[Dn,k,l] ∩ bd(D′) is empty for all i < n,
all j = 0, 1, . . . , gi and all discs D′ ∈ Di,j,

• diamSi
(Π′i,n ◦ Π′n,k→0[Dn,k,l]) < 1

2n for all i < n,

• diamSi,j
(Π′i,gi→j ◦Π′i+1,n ◦Π′n,k→0[Dn,k,l]) < 1

2n for all i < n and all j = 0, 1, . . . , gi.
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Choosing such discs is possible and we do it analogously as we have defined the elements of
the families Dn.

Now the families of discs Dn and Dn,k together with the maps Π′n and Π′n,k→k−1 satisfy
assumptions of Theorem 4.1 (note that An is dense in Sn and An,k is dense in Sn,k). Since the
maps Π′n were chosen to be close enough to the maps Πn to preserve the inverse limit, as a
corollary we get:

Theorem 7.2. The Gromov boundary of a 7-systolic normal orientable pseudomanifold of
dimension 3 is a Jakobsche tree of tori, i.e. the Pontriagin sphere.

8 Nonorientable trees of surfaces

In this section we examine properties of Jakobsche inverse systems of non-orientable surfaces.
An extension of the Jacobsche’s construction for nonorientable case was considered in [S]. In
dimension 2, i.e. for non-orientable surfaces, it is possible and more convenient to follow rather
Jakobsche’s approach then that of Stallings. We sketch here some details of this.

We call a family D of pairwise disjoint closed discs contained in the interior of a manifold
M a good family, if it is null family and the family {int(D) : D ∈ D} is a dense family in M .

The following lemma is a simple extension of Toruńczyk’s lemma (see [J, Lemma 3.1]).

Lemma 8.1. Let Σ and Σ′ be nonorientable surfaces (with or without boundaries) and let
f : Σ→ Σ′ be a homeomorphism. Let Z and Z′ be two good families of closed 2-discs in Σ and
Σ′ respectively. Then there exists a bijective function p : Z→ Z

′ and a homeomorphism

f ′ : Σ \
⋃

D∈Z

int(D)→ Σ′ \
⋃

D′∈Z′

int(D′)

such that
f ′⌈bd(Σ) = f⌈bd(Σ) and f ′[bd(D)] = bd(p(D)) for each D ∈ Z.

The proof of this lemma is the same as in [J], thus we omit it.
Using Lemma 8.1 and the fact that every homeomorphism of the boundary of a closed

nonorientable surface with the interior of a disc removed can be extended to a homeomorphism
of this surface, by the same argument as in the proof of Theorem 4.6 in [J], we get the following:

Theorem 8.2. Let (L0
α1←− L1

α2←− L2 ←− . . .) be an inverse system of connected closed nonori-
entable surfaces and for each k ≥ 0 let Dk be a finite collection of pairwise disjoint discs in Lk

such that:

1. each Lk is a connected sum of finitely many copies of L0,

2. every map αk+1 restricted to the preimage

α−1
k+1

[

Lk \
⋃

{int(D) : D ∈ Dk}
]

is a homeomorphism onto the set

Lk \
⋃

{int(D) : D ∈ Dk}
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3. every preimage α−1
k+1[D] (for D ∈ Dk) is homeomorphic to a copy of L0 with the interior

of a disc removed,

4. the family {αj,i[D] : i ≥ j, D ∈ Di} is null and dense in Lj for all j,

5. the intersection αj,i[D] ∩ bd(D′) is empty for for all i > j and for all discs D ∈ Di and
D′ ∈ Dj.

Then the inverse limit lim
←

(L0
α1←− L1

α2←− L2 ←− . . .) depends only on L0.

As in the orientable case we denote this space by X(L0) and call it a Jacobsche tree of
nonorientable surfaces L0. Similary as in the orientable case, we call the system (Lk, αk, Dk)k≥0

satisfying assumptions 1-5 of Theorem 8.2 a Jakobsche inverse system for L0. If the system
(Lk, αk, Dk)k≥0 satisfies assumptions 2, 4, 5 and the condition:

3a. every preimage α−1
k+1[D] (for D ∈ Dk) is homeomorphic to a connected closed nonorientable

surfaces with the interior of a disc removed,

then we call it a Jakobsche inverse system of nonorientable surfaces.

Remark 8.3. 1. For L0 = RP
2, the projective plane, the space X(RP

2) is known as the
nonorientable Pontriagin surface and denoted by ΣP .

2. For L0 = Σg, the nonorientable surface of genus g > 1, the space X(Σg) is homeomorphic
to the nonorientable Pontriagin surface. Actually the tree of nonorientable surfaces is
homeomorphic to the nonorientable Pontriagin surface (see Remark 8.6)

The next two lemmas show that if nonorientable surfaces occur densly enough in a tree of
surfaces, than this tree is homeomorphic to the nonorientable Pontriagin surface.

Lemma 8.4. Let (X0
s1←− X1

s2←− X2 . . .) and (Y0
t1←− Y1

t2←− Y2 . . .) be two inverse systems of
topological spaces such that the maps si and ti are continuous and onto for all natural numbers
i and such that there exist:

• increasing sequences {nk}, {mk}, {n
′
k} and {m′k} of natural numbers satisfying

nk−1 ≤ n′k ≤ nk and mk−1 ≤ m′k ≤ mk,

• continuous maps fk : Xnk
→ Ymk

and gk : Ym′

k
→ Xn′

k
being onto for all k,

such that the following diagrams are commutative:

Xn′

k

sn′

k
,nk

←−−−− Xnk

gk

x









y

fk

Ym′

k
←−−−−
tm′

k
,mk

Ymk

and

Xnk−1

snk−1,n′

k←−−−−− Xn′

k

fk−1





y

x





gk

Ymk−1
←−−−−−
tmk−1,m′

k

Ym′

k

i.e. it holds gk ◦ tm′

k
,mk
◦ fk = sn′

k
,nk

and fk−1 ◦ snk−1,n′

k
◦ gk = tmk−1,m′

k
. Then the inverse limits

lim
←

(Xk, sk) and lim
←

(Yk, tk) are homeomorphic.
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Proof: Define maps

F : lim
←

(Xn0

sn0,n′

1←−−− Xn′

1

sn′

1,n1
←−−− . . .)→ lim

←
(Ym0

tm0,m′

1←−−−− Ym′

1

tm′

1,m1
←−−−− . . .)

and

G : lim
←

(Ym0

tm0,m′

1←−−−− Ym′

1

tm′

1,m1
←−−−− . . .)→ lim

←
(Xn0

sn0,n′

1←−−− Xn′

1

sn′

1,n1
←−−− . . .)

by formulas

F ((x0, x
′
1, x1, x

′
2, . . .)) = (f0(x0), tm′

1,m1
(f1(x1)), f1(x1), tm′

2,m2
(f2(x2)), . . .)

and
G((y0, y

′
1, y1, y

′
2, . . .)) = (sn0,n′

1
(g1(y

′
1)), g1(y

′
1), sn1,n′

2
(g2(y

′
2)), g2(y

′
2), . . .)

respectively.
These maps are well defined, continuous and inverse one to the other. Thus they are both

homeomorphisms. Moreover, the inverse limits

lim
←

(Xk, sk) and lim
←

(Xn0

sn0,n′

1←−−− Xn′

1

sn′

1
,n1

←−−− Xn1

sn1,n′

2←−−− . . .)

and similarly

lim
←

(Yk, tk) and lim
←

(Ym0

tm0,m′

1←−−−− Ym′

1

tm′

1
,m1

←−−−− Ym1

tm1,m′

2←−−−− . . .)

are naturally homeomorphic. Thus the assertion holds.

Lemma 8.5. Let (L0
α1←− L1

α2←− L2 . . .) be an inverse system of connected closed nonorientable
surfaces and for each k ≥ 0 let Dk be a finite collection of pairwise disjoint discs in Lk such
that:

1. (Lk, αk, Dk) is a Jakobsche inverse system of surfaces, 2

2. for every natural number k and for every disc D ∈ Dk there is a natural number lD > k
such that the preimage (αk,lD)−1[D] is a nonorientable surface with the interior of a disc
removed,

3. every map αk+1 collapses Lk+1 to Lk along Dk.

Then the inverse limit lim
←

(L0
α1←− L1

α2←− L2 ←− . . .) is homeomorphic to the nonorientable

Pontriagin surface.

Proof: We shall define the following collection of data:

• an infinite increasing sequence {nk} of natural numbers,

• a sequence {L′k} of nonorientable closed surfaces,

• a sequence {D′k} of finite families of pairwise disjoint discs in every surface L′k,

2In particular we require that the preimage α−1

k+1
[D] (for D ∈ Dk) is a closed surface (orientable or not) with

the interior of a disc removed.
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• sequences of maps {fk : Lnk
→ L′k−1}, {gk : L′k → Lnk

} and {α′k : L′k → L′k−1}

satisfying the following:

a) the diagrams:

Lnk
Lnk+1

L′k

αnk,nk+1
oo

gk

ZZ444444 fk+1
��








 and

L′k−1 L′k

Lnk

α′

k

oo

fk

��








 gk

ZZ444444

are commutative, i.e. gk ◦ fk+1 = αnk,nk+1
and fk ◦ gk = α′k,

b) gk maps

L′k \
⋃

D∈D′

k−1

(α′k)
−1[int(D)]

homeomorphically onto

Lnk
\

⋃

D∈D′

k−1

f−1
k [int(D)]

and maps (α′k)
−1[D] onto f−1

k [D] for all discs D ∈ D′k−1,

c) fk+1 maps

Lnk+1
\

⋃

D∈D′

k

f−1
k+1[int(D)]

homeomorphically onto

L′k \
⋃

D∈D′

k

int(D)

d) α′k collapses L′k to L′k−1 along D′k−1,

e) (L′k, α
′
k, D

′
k) is a Jakobsche inverse system of nonorientable surfaces.

Note that by Lemma 8.4 the inverse limits lim
←

(Lk, αk) and lim
←

(L′k, α
′
k) are homeomorphic.

By the nonorientable analogues of Lemma 6.2 and Lemma 6.3 the inverse limit lim
←

(L′k, α
′
k) is

homeomorphic to the Jakobsche tree of projective planes. Thus, by Theorem 8.2, both of these
inverse limits are homeomorphic to the nonorientable Pontriagin surface.

It remains to construct the desired data. We preceed to do this inductively. Let n0 = 0,
L′0 = L0, g0 = IdL0, D′0 = D0. Let n1 = 1, f1 = α1.

Suppose that we have defined the following:

• natural numbers nj for j = 0, 1, . . . , k satisfying nj < nj+1 for j = 0, 1, . . . , k − 1,

• nonorientable closed surfaces L′j for j = 0, 1, . . . , k − 1,

• finite families D
′
j (for j = 0, 1, . . . , k − 1) of pairwise disjoint discs in every surface L′j

respectively,

• maps fj : Lnj
→ L′j−1 for j = 0, 1, . . . , k, gj : L′j → Lnj

for j = 0, 1, . . . , k − 1 and
α′j : L′j → L′j−1 for j = 0, 1, . . . , k − 1 (if k > 0)
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satisfying (a), (b), (c), (d) and an additional condition:

f) every preimage (α′j)
−1[D] (for D ∈ D′j−1) is homeomorphic to a nonorientable closed surface

with the interior of a disc removed.

Let nk+1 > nk be the smallest integer such that the preimage (fk ◦ αnk,nk+1
)−1[D] is a

nonorientable surface with the interior of a disc removed for all discs D ∈ D′k−1 (such a number
exists due to assumption 2).

Let
L′k =

(

L′k−1 \
⋃

D∈D′

k−1

int(D)
)

∪
⋃

D∈D′

k−1

(fk ◦ αnk,nk+1
)−1[D]

where points x ∈ bd(D) are identified with their preimages (fk ◦ αnk,nk+1
)−1[x] due to (c) and

assumption 1.
Define the maps gk : L′k → Lnk

, fk+1 : Lnk+1
→ L′k and α′k : L′k → L′k−1 as follows:

gk(x) =



















f−1
k (x) if x ∈ L′k−1 \

⋃

D∈D′

k−1

int(D) (by (c) for fk)

αnk,nk+1
(x) if x ∈

⋃

D∈D′

k−1

(fk ◦ αnk,nk+1
)−1[D]

fk+1(x) =











x if x ∈
⋃

D∈D′

k−1

(fk ◦ αnk,nk+1
)−1[D]

fk ◦ αnk,nk+1
(x) otherwise

and

α′k(x) =











x if L′k−1 \
⋃

D∈D′

k−1

int(D)

fk ◦ αnk,nk+1
(x) otherwise

These maps are of course well defined and continuous. They satisfy (a), (b) and (d) in an
obvious way.

To define the family D′k we need some technical definition. For nk ≤ j < nk+1 let

D
+
j = {D ∈ Dj : D ∩ (fk ◦ αnk,j)

−1[D′] = ∅ for D′ ∈ D
′
k−1 and

D ∩ α−1
s,j [D

′′] = ∅ for nk ≤ s < j and D′′ ∈ Ds}

Define the family D′k by

D
′
k =

{

fk+1

[

α−1
j,nk+1

[D]
]

: nk ≤ j < nk+1, D ∈ D
+
j

}

We skip the straightforward checking of conditions (c) and (e).

Remark 8.6. 1. Note that the assumption 3 in Lemma 8.5 is not necessary. Indeed, as in
the proof of Theorem 4.6 in [J] it can be shown that it is possible to change the maps
αk : Lk → Lk−1 on the preimages α−1

k [D] (for D ∈ Dk−1), while keeping the inverse limit
unchanged, to get the collapsing maps.

2. The same argument shows that the tree of orientable surfaces is homeomorphic to the
Pontriagin sphere.
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9 Proof of part b) of Main Theorem

In this section we extend Theorem 7.2 to the nonorientable case. We need some preparations.
We start with the following property of group actions on metric spaces, the proof of which we
skip.

Lemma 9.1. Let X be a proper metric space and let a group G act on X cocompactly by
isometries. Then there is a positive constant R > 0 such that for all points x ∈ X translates of
the metric ball BX(x, R) under elements of G cover X, i.e. it holds G ·BX(x, R) = X.

Consider now a 3-dimensional 7-systolic normal pseudomanifold X with a cocompact action
of a group G by simplicial automorphisms. For a vertex w ∈ X and a simplex σ ⊂ Xw consider
a subcomplex

Xw,σ =
(

Xw \B2(σ, Xw)
)

∪ S2(σ, Xw)

Let Kw,σ denote the diameter diam(X
(1)
w,σ) (in the intrinsic metric d

X
(1)
w,σ

). Note that the number

K = max{Kw,σ : w ∈ X(0), σ ⊂ Xw} is finite.
The next lemma describes the relationship between distances in succesive spheres in a 7-

systolic normal pseudomanifold of dimension 3.

Lemma 9.2. Let X be a 7-systolic 3-dimensional normal pseudomanifold with a cocompact
action of a group G by simplicial automorphisms. Let K be as above. Let p and q be two
vertices in the sphere Sk and let p′ and q′ be two vertices in the sphere Sk+1 connected by an
edge with p and q respectively. Then

d
S

(1)
k+1

(p′, q′) ≤ K · (d
S

(1)
k

(p, q) + 1)

Proof: Let p = p0, p1, . . . , pn = q be a geodesic in the 1-skeleton S
(1)
k . For i = 1, 2, . . . , n let

p′i be a vertex in the intersection Xpi−1∗pi
∩ Sk+1. Note that diam

(

(Xpi
∩ Sk+1)

(1)
)

≤ K, since
Xpi
∩ Sk+1 = Xpi,ρ, where ρ = Πk(pi). Thus

d
S

(1)
k+1

(p′, q′) ≤ d
S

(1)
k+1

(p′, p′1) + Σn−1
j=1d

S
(1)
k+1

(p′i, p
′
i+1) + d

S
(1)
k+1

(p′n, q
′) ≤ K · (n + 1)

The next lemma shows that if a nonorientable complex X is as in Lemma 9.2 then there
are enough many vertices with nonorientable links in X, in certain precise sense.

Lemma 9.3. Let X be a 7-systolic nonorientable pseudomanifold of dimension 3 with a cocom-
pact action of a group G by simplicial isometries. Let v ∈ X be a vertex. Let w ∈ Sk = Sk(v, X)
be a vertex. Then for every positive number ǫ > 0 there are a number k′ > k and a vertex u ∈ Sk′

such that the link Xu is a nonorientable surface and Πk,k′(u) ∈ BSk
(w, ǫ).

Proof: Let ǫ be a positive number. By Lemma 9.1 there is a positive number R such that
for all points x ∈ X translates of a metric ball BX(x, R) under elements of G cover X, i.e. it
holds G · BX(x, R) = X. Thus there is a positive integer N such that G · BN(w, X) = X for
all vertices w ∈ X (where BN (w, X) denote the combinatorial ball).

For a natural number l > 0 and for i = 0, 1, . . . , 2N consider the combinatorial spheres
Sk+l+i = Sk+l+i(v, X). Let ui ∈ Sk+l+i be such points that Πk+l+i+1(ui+1) = ui for i =
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0, 1, . . . , 2N − 1 and Πk,k+l(u0) = w. There is a vertex u ∈ BN(uN , X) such that the link Xu

is a nonorientable surface. Since BN(uN , X) ⊆ Bk+l+2N(v, X) \ Bk+l−1(v, X), it is enough to
show that for l large enough for all vertices z ∈ BN(uN , X) we have dSk

(Πk,k+l+i(z), w) < ǫ,
where k + l + i = dX(1)(v, z) (here we use the convention that Πk,k = IdSk

).
For this let z be a vertex in the intersection BN(uN , X) ∩ Sk+l+i for some i = 0, 1, . . . , 2N .

Let
u0 = z0,1, z0,2, . . . , z0,j0, z1,1, . . . , z1,j1, . . . , zi−1,1, . . . , zi−1,ji−1

, zi,1, zi,ji
= z

(for some natural numbers j0 ≥ 1, j1 ≥ 1, . . . , ji ≥ 1) be a geodesic in the 1-skeleton X(1)

satisfying zm,n ∈ BN (uN , X) ∩ Sk+l+m(v, X) for m = 0, 1, . . . , i and n = 1, 2, . . . , jm (actually
all geodesics between z and u0 have this form, since combinatorial balls are convex (see [JS,
Corollary 7.5]) and thus geodesically convex (see [HS, Proposition 4.9])).

Let K be a constant as in Lemma 9.2 and let L = max{K, 2N + 2}. We will show that

dSk+l+i
(z, ui) < L2N+3.

Using this inequality we get that

dSk
(Πk,k+l+i(z), w) < C l+iL2N+3 < C lL2N+3

where C is a constant given by Fact 2.7. Thus for l large enough the assertion holds.
To prove the inequality, we inductively show that for all t = 0, 1, . . . , i it holds

d
S

(1)
k+l+t

(zt,jt
, ut) < tLt+1 + 2R and d

S
(1)
k+l+t

(zt,0, ut) < tLt+1

Since z0,j0 and u0 are vertices in the intersection BN (uN , X) ∩ Bk+l(v, X), it follows that

d
S

(1)
k+l

(z0,j0, u0) = dX(1)(z0,j0, u0) ≤ 2N

Suppose that
d

S
(1)
k+l+t

(zt,jt
, ut) < tLt+1 + 2N

By Lemma 9.2 it holds

d
S

(1)
k+l+t+1

(zt+1,0, ut+1) < K(tLt+1 + 2N + 1) < L(t + 1)Lt+1 = (t + 1)Lt+2

And thus
d

S
(1)
k+l+t+1

(zt+1,jt+1, ut+1) < (t + 1)Lt+2 + 2N

It follows that
d

S
(1)
k+l+i

(z, ui) < iLi+1 + 2N < L2N+3

and the lemma follows.

Lemma 9.4. Let X and G be as in Lemma 9.3. Let v ∈ X be a vertex. Let w ∈ Sk = Sk(v, X)
be a vertex. Then there are a number k′ > k and a vertex u ∈ Sk′ such that the link Xu is a
nonorientable surface and Π′k,k′(u) = w.
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Proof: Let w′ ∈ Sk+1 be a vertex such that Πk+1[Res(w′, Sk+1)] = w. Let ǫ > 0 be such a
number that ǫ + ǫl

1
1−C

< 1 for l = 2, 3, . . . (where ǫl are numbers given by the proof of Lemma
5.3). Due to Lemma 9.3 there are a number k′ > k + 1 and a vertex u ∈ Sk′ such that the link
Xu is a nonorientable surface and Πk+1,k′(u) ∈ BSk+1

(w′, ǫ).
Note, that if dSl

(x, y) ≤ δ, then

dSl−1
(Π′l(x), Πl(y)) ≤ dSl−1

(Π′l(x), Πl(x)) + dSl−1
(Πl(x), Πl(y)) ≤ Cδ + ǫl

It follows that

dSk+1
(Π′k+1,k′(u), Πk+1,k′(u)) ≤ ǫk+1 + Cǫk+2 + . . . + Ck′−k−1ǫk′ < ǫk+1

1

1− C
< 1− ǫ

Thus Π′k+1,k′(u) ∈ BSk+1
(w′, 1) ⊂ Res(w′, Sk+1), so Πk,k′(u) = w.

Now we can prove part b) of Main Theorem.

Theorem 9.5. Let X be a 7-systolic nonorientable pseudomanifold of dimension 3. Let a
group G act cocompactly on X by simplicial automorphisms. Then the Gromov boundary ∂GX
is homeomorphic to the nonorientable Pontriagin surface.

Proof: By Sections 3, 5, 6 and 7 we can assume that the Gromov boundary ∂GX is homeo-
morphic to the inverse limit of a system of nonorientable surfaces satisfying assumptions 1 and
3 of Lemma 8.5. By Lemma 9.4 we can assume that assumption 2 is also satisfied. Thus the
assertion holds by Lemma 8.5.
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