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Abstract

We prove a theorem conjectured by D.T. Wise in [9], that if a group
acts properly discontinuously and cocompactly on a systolic complex,
in whose 1–skeleton there is no isometrically embedded copy of the
1–skeleton of an equilaterally triangulated Euclidean plane, then the
group is word–hyperbolic.
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1 Introduction

Systolic complexes were introduced by J. Świątkowski and T. Januszkiewicz
in [6] and independently by F. Haglund in [4]. They are simply–connected
simplicial complexes satisfying certain link conditions. Their properties are
very similar to the properties of CAT(0) metric spaces, therefore one calls
them complexes of simplicial nonpositive curvature. In particular it was
shown in [6] that they are contractible.

Geodesics (directed) are well defined for systolic complexes and one also
has the notion of convexity. This was used by the authors of [6] to prove the
theorem, that if a group Γ acts properly discontinuously and cocompactly
by simplicial automorphisms on a systolic complex, then Γ is biautomatic,
so also semihyperbolic. It was shown, that if one imposes a little stronger
condition on links, the complex must be a hyperbolic metric space in the sense
of Gromov (for the definition see [3]). A systolic complex does not have to
be hyperbolic in general, for example equilaterally triangulated Euclidean
plane is a two dimensional systolic complex. We prove that this is the only
obstruction. Our result, which we formulate slightly later, is similar in spirit
to the following well known theorem.
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Theorem 1.1 ([1]). If a group Γ acts properly and cocompactly by isometries
on a locally compact CAT(0) space X, then Γ is word–hyperbolic if and only
if X does not contain an isometrically embedded copy of the Euclidean plane.

Since not every systolic complex is a CAT (0) space, our goal is to prove
a theorem which is a systolic analogue to Theorem 1.1:

Theorem 1.2. Let Γ be a systolic group acting on a systolic complex X.
Then Γ is word–hyperbolic if and only if there is no isometric embedding
of the 1–skeleton of an equilaterally triangulated Euclidean plane into the
1–skeleton X(1)of X.

After writing the proof it was communicated to us that an alternative
version of proof could be constructed from the theorem of D.T. Wise [9] on
minimal area embedded flat plane and from recent study by T. Elsner [2]
on minimal flat surfaces in systolic complexes. Our proof, however, is more
direct.

I would like to thank Jacek Świątkowski for posing the problem and
advice.

2 Some information on systolic complexes

Let us recall the definition of a systolic complex and a systolic group following
J. Świątkowski and T. Januszkiewicz [6].

Definition 2.1. A subcomplex K of a simplicial complex X is called full in
X if any simplex ofX spanned by vertices ofK is a simplex ofK. A simplicial
complex X is called flag if any set of vertices, which are pairwise connected
by edges of X, spans a simplex in X. A flag simplicial complex X is called
k–large, k ≥ 4 if there are no embedded cycles of length < k being full
subcomplexes of X.

Definition 2.2. A simplicial complex X is called systolic if it is connected,
simply–connected and links of all simplices in X are 6–large. A group Γ
is called systolic if it acts cocompactly and properly by simplicial automor-
phisms on a systolic complex X. (Properly means X is locally finite and for
each compact subcomplex K ⊂ X the set of γ ∈ Γ such that γ(K) ∩K 6= ∅
is finite.)

Recall [6], that systolic complexes are themselves 6–large. In particular
they are flag. Now we will briefly treat the definitions and facts concerning
convexity:

2



Definition 2.3. For every pair of vertices A, B in a simplicial complex X
denote by |AB| the combinatorial distance between A, B in X(1), the 1–
skeleton of X. A subcomplex K of a simplicial complex X is called 3–convex
if it is a full subcomplex of X and for every pair of edges AB, BC such
that A, C ∈ K, |AC| = 2, we have B ∈ K. A subcomplex K of a systolic
complex X is called convex if it is connected and links of all simplices in K
are 3–convex subcomplexes of links of those simplices in X.

In chapter 8 of [6] authors conclude that convex subcomplexes of a sys-
tolic complex X are contractible, full and 3–convex in X. Now define the
combinatorial ball Bn(Y ) = span{P ∈ X : |PS| ≤ n for some vertex S ∈ Y },
where n ≥ 0, Y ⊂ X. If Y is convex (in particular, if Y is a simplex) then
Bn(Y ) is a convex subcomplex of a systolic complex X, as proved in [6].

We will need a crucial projection Lemma 14 of [6], which we will apply
in most cases to σ being edges. Define the residueof a simplex σ in X as the
union of all simplices in X, which contain σ.

Lemma 2.4. Let Y be a convex subcomplex of a systolic complex X and let
σ be a simplex in B1(Y )\Y . Then the intersection of the residue of σ and of
the complex Y is a simplex (in particular it is nonempty).

Definition 2.5. The simplex as in Lemma 2.4 is called the projection of σ
onto Y .

Now for a pair of vertices V, W, |V W | = n in a systolic complex X
we define inductively a series of simplices σ0 = V, σ1, . . . , σn = W as follows.
Take σi+1 equal to the projection of σi onto Bn−1−i(W ) for i = 0, 1, . . . , n−1.
The series (σn) is called the directed geodesic from V to W . It is proved in
[6] that if V, W ∈ K which is a convex subcomplex of a systolic complex X,
then the the simplices of the directed geodesic from V to W (and also from
W to V ) are all in K. We will need this in the form of the following corollary.

Corollary 2.6. For every pair of vertices V, W in a systolic complex X there
exists a 1–skeleton geodesic connecting V to W , such that if V, W belong to
a common convex subcomplex K of X, then this geodesic is also contained in
K.

Definition 2.7. We will call a 1–skeleton geodesic satisfying Corollary 2.6
a special geodesic.1

1We were informed that J. Świątkowski and F. Haglund have proved in [5] that every
1–skeleton geodesic in a systolic complex is special in this sense.
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3 Embedding lemmas

In this section we prepare the proof of the main theorem.

Definition 3.1. A two dimensional simplicial complex with distinguished
vertices A, B and C is called a k–triangle ABC, k ≥ 0 if it is simplicially
equivalent to equilateral triangulation into k2 simplices of an Euclidean tri-
angle of edge length k, with vertices A, B, C corresponding to the vertices of
the original Euclidean triangle.

Lemma 3.2. Let D : ∆ → X be a simplicial mapping from ∆, a k–triangle
ABC, into a systolic complex X, such that for any vertex V ∈ {A, B, C} and
any vertex P lying in ∆ on a geodesic connecting the two other vertices from
the set {A, B, C} we have |D(V )D(P )| = k. Then D considered as mapping
between 1–skeletons of ∆ and X is an isometric embedding.

Proof. Take any different vertices R,S ∈ ∆. We claim that R,S lie on
a certain 1–skeleton geodesic in∆ connecting a vertex V ∈ {A, B, C} to some
point P defined as in the hypothesis of the lemma. This can be observed
in the following way. Recall that k–triangle ∆ carries Euclidean structure.
Consider three straight Euclidean lines going through R contained in the
1–skeleton of ∆. They divide ∆ into six regions. Now, depending on which
region is vertex S in, it is easy to point out vertices V, P and a geodesic V P
containing R and S. (Vertices V, P belong to the sector S is in and to the
opposite sector.) By the hypothesis of the lemma D must embed geodesic
V P into X(1), so it also preserves the 1–skeleton distance between R and S.
This means, that D considered as mapping between 1–skeletons of ∆ and X
is an isometric embedding. �

Lemma 3.3. Let D : ∆ → X be a simplicial mapping from ∆, a k–triangle
ABC, into a systolic complex X, such that |D(A)D(B)| = |D(B)D(C)| =
|D(C)D(A)| = k. Denote by AB the unique length n path in ∆ between
vertices A, B consisting of k edges and k +1 vertices. If there exists a convex
Z ⊂ X such that D−1(Bl(Z)) = Bl(AB) for l = 0, 1, . . . , k then D considered
as mapping between 1–skeletons of ∆ and X is an isometric embedding.

Proof. Note that the hypothesis immediately implies that the distance be-
tween D(C) and D(AB) is equal k. In order to apply Lemma 3.2 we have to
prove the same for D(B), D(AC) and D(A), D(BC). We focus on the last
pair.

Denote by P j
i the unique vertex of ∆ which lies at distance i in the

1–skeleton of ∆ from C and at distance j in the 1–skeleton of ∆ from A,
0 ≤ i, j ≤ k, i + j ≥ k.
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We will prove by backward induction that the distance |D(P k
i )D(A)| =

|P k
i A| = k for i = k, k−1, . . . , 0. For i = k we have P k

k = B, so |D(P k
k )D(A)| =

|D(B)D(A)| = k = |BA| is already an assumption of the lemma.

Suppose we have proved already the equality for all i : 0 ≤ s < i ≤ k.
We will prove now the equality for i = s. Let D(A) = S0, S1, . . . , Sm−1, Sm =
D(P k

s ) be consecutive vertices of a 1–skeleton special geodesic of length m
joining D(A) with D(P k

s ) in X. Notice that Sm is at distance k − s from
Z, but S0 belongs to Z. Assume r < m is the biggest number such that
Sr ∈ Bk−s−1(Z). Due to convexity of balls the vertices Sq, m ≥ q > r be-
long to Bk−s(Z). Now for each edge SqSq+1, r < q < m choose a point Rq

in Bk−1−s(Z) contained in the projection of SqSq+1 onto Bk−1−s(Z). By
the projection properties (Lemma 2.4) the sequence of vertices D(A) =
S0, S1, . . . , Sr, Rr+1, Rr+2, . . . , Rm−1, D(P k

s+1) is connected by edges in the 1–
skeleton of X and therefore by induction hypothesis we have m ≥ k. By
choosing a path in X between D(A) and D(P k

s ) which is an image of geodesic
path between A and P k

s in ∆ one sees that |D(A)D(P k
s )| ≤ k, so altogether

|D(A)D(P k
s )| = k, which is the required induction step equality.

In this way we have proved that the distance between D(A) and D(BC)
is equal k. By repeating the same argument we obtain also that for any
i, j ≥ 0, i + j = k we have |D(B)D(P j

i )| = k. Now we know, that the
distance in X(1) between vertices D(A), D(B), D(C) and vertices which are
images of the opposite edges in k–triangle ∆ are all equal to k, so we can
apply Lemma 3.2. �

Lemma 3.4. Let Γ be a group acting cocompactly on a locally finite systolic
complex X. If for arbitrarily large n > 0 there exists an isometric embedding
of the 1–skeleton of a n–triangle ∆ into X(1), then there exists an isometric
embedding of the 1–skeleton of equilaterally triangulated Euclidean plane into
X(1).

Proof. Denote by E the equilaterally triangulated Euclidean plane and by
∆0 any vertex of E. For all k ≥ 0 pick k–triangles ∆k ⊂ E such that
∆k ⊂ ∆k+1 and

⋃∞
k=0 ∆k = E.

We will define inductively isometric embeddings fk : ∆
(1)
k → X(1) such

that f
k+1|∆(1)

k
= fk. The union

⋃∞
k=0 fk : E(1) → X(1) will be the desired

isometric embedding.

First, the hypothesis of the lemma guarantees that for arbitrarily large n
there exist embeddings Dn : ∆

(1)
n → X(1). Since Γ acts cocompactly on X,

we can choose γn ∈ Γ such that γn ◦Dn(∆0) belongs to a finite set of vertices
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in X. By passing to a subsequence and substituting Dn with γn ◦Dn we can
assure that Dn(∆0) does not depend on n. We then define f0 : ∆0 → X(1)

by f0(∆0) = Dn(∆0).

Now suppose we have already defined an embedding fk : ∆
(1)
k → X(1).

Note that ∆
(1)
k+1\∆

(1)
k is finite and B1(Im(fk)) is also finite (because X is

locally finite), so by passing to a subsequence we can assure that D
n|∆(1)

k+1

does not depend on n. We then define fk+1 : ∆
(1)
k+1 → X(1) by fk+1 = D

n|∆(1)
k+1
.

This ends the induction step. �

4 Hyperbolicity

We are ready to prove the main theorem of the paper.

Proof of Theorem 1.2. The implication from left to right is easy. If X(1),
the 1–skeleton of a systolic complex X, contains an isometrically embedded
1–skeleton of the triangulated Euclidean plane then X(1) is not a hyperbolic
metric space, so Γ is not word–hyperbolic.

Now we will prove right to left implication. Suppose Γ is not word–
hyperbolic. Then, by a theorem of P. Papasoglu [8] bigons in X(1)are not
thin, i.e. for every n ∈ N there exist vertices V, Y ∈ X and two 1–skeleton
geodesics R,S, joining V, Y (denote their consecutive vertices by V = R0,
R1, . . . , Rm−1, Rm = Y ; V = S0, S1, . . . , Sm−1, Sm = Y ) and there exists
t : 0 < t < m, such that |RtSt| > n. Denote k = |RtSt| > n, choose
a special 1–skeleton geodesic of length k connecting Rt, St and denote its
consecutive vertices by Rt = P 0

k , P 1
k , . . . , P k−1

k , P k
k = St. Now construct in-

ductively vertices P j
i ∈ X, 0 ≤ i, j ≤ k, i + j ≥ k in the following way. For

i = k the vertices are already given. Suppose we have already constructed
vertices P j

i for all i such that p < i ≤ k, where i, j are as above. Now we
will define vertices P j

i for i = p. For each j such that k − p ≤ j ≤ k project
the edge P j−1

p+1 P j
p+1 onto the ball Bt−(k−p)(V ) and denote any vertex of this

projection by P j
p .

Now notice that for a fixed l, such that 0 ≤ l ≤ k, the vertices P j
i such that

i ≥ k−l are all contained in the ball Bm−t+l(Y ) = Bl(Bm−t(Y )) and no other
vertex P j

i belongs to this ball. This means that the k–triangle formed by
vertices P j

i satisfies all the assumptions of Lemma 3.3 with Z = Bm−t(Y ), D
being identity and therefore the 1–skeleton of this k–triangle is isometrically
embedded inX(1). Since k > n can be chosen arbitrarily large, the hypothesis
of Lemma 3.4 is satisfied and we obtain the 1–skeleton of the equilaterally
triangulated Euclidean plane isometrically embedded in X(1). �
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