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Abstract. We introduce the property of pro-π1-saturation (defined in terms of fun-
damental pro-groups) for compact metric spaces. We expect (though not yet prove) this
property to be stronger than hereditary asphericity. We show that 1-dimensional spaces
and Gromov boundaries of 7-systolic groups are pro-π1-saturated (the latter class contains
examples of pro-π1-saturated spaces with arbitrary finite topological dimension).

1. Introduction

Systolic complexes were introduced in [JS], as simply connected simplicial complexes
which satisfy certain local combinatorial condition that mimicks nonpositive curvature.
7-systolic complexes satisfy slightly stronger local condition, and share many properties
with negatively curved spaces, e. g. they are hyperbolic in the sense of Gromov. 7-systolic
groups are ones that act geometrically on 7-systolic complexes. In particular, they are
word-hyperbolic. It was shown in [JS] that 7-systolic groups do exist in arbitrary coho-
mological dimension, and thus that their Gromov boundaries have arbitrary topological
dimension.

Damian Osajda has shown in [O] that Gromov boundaries of 7-systolic groups are
strongly hereditarily aspherical. (Hereditarily aspherical spaces were introduced by R.
Davermann in [D], for the purpose of getting spaces for which the cell-like maps do not
raise dimension.) To prove his result, Osajda describes Gromov boundary ∂X of a 7-
systolic complex X as inverse limit of the sequence of combinatorial spheres in X , with
some appropriately defined bonding maps. We will refer to this inverse sequence of spheres
as Osajda’s inverse sequence. The result of Osajda excludes spheres and Menger compacta
in dimensions ≥ 2 (and many other topological spaces) from being Gromov boundaries of
7-systolic groups. In fact, in high dimensions 7-systolic groups are the only known word
hyperbolic groups with hereditarily aspherical Gromov boundary.

In this paper, by taking a closer look at Osajda’s inverse sequence, we isolate another
property of Gromov boundaries ∂X of 7-systolic complexes X . We name this property
pro-π1-saturation. It says that, for any closed subset Y ⊂ ∂X and any point z0 ∈ Y the
morphism of fundamental pro-groups ipro

∗ : pro-π1(Y, z0)→ pro-π1(∂X, z0) induced by the
inclusion i : Y → ∂X is a monomorphism in the category of pro-groups. The statement of
our main result is as follows.
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Main Theorem. Let X be a locally finite 7-systolic simplicial complex. Then its Gromov
boundary ∂X is pro-π1-saturated. In particular, Gromov boundary of any 7-systolic group
is pro-π1-saturated.

An explicit rich class of groups to which the result above applies, containing examples
with arbitrary (virtual) cohomological dimension, is that of right-angled Coxeter groups
whose nerves are 7-large simplicial complexes (the term 7-large is explained in Definition
3.1). For more details see Comment 9 in Section 8.

It seems to us that the property of pro-π1-saturation is stronger than that of heredi-
tary asphericity, though we don’t know how to prove this. Clearly, there are hereditarily
aspherical spaces that are not pro-π1-saturated, e.g. a 2-disc (see Remark 2.2(1)). We ob-
serve that all spaces of topological dimension 1 are pro-π1-saturated (see Proposition 2.7).
It is not clear if the notions of hereditary asphericity and pro-π1-saturation are different
in the class of Gromov boundaries of word-hyperbolic groups. All this rather brings new
questions than solves any open problems.

The paper is organized as follows. In Section 2 we recall basic definitions and facts
related to fundamental pro-groups, and introduce the property of pro-π1-saturation. We
also describe a weaker variant of this property related to shape fundamental groups. We
show that 1-dimensional compact metric spaces are pro-π1-saturated, and discuss examples
and non-examples in higher dimensions.

In Section 3 we recall, mainly from [JS], the necessary material concerning systolic
and 7-systolic complexes and groups. In Section 4 we describe, after [O], the Osajda’s
inverse sequence for a 7-systolic complex.

Sections 5 and 6 contain new observations concerning the Osajda’s inverse sequence.
They allow to prove, in Section 7, the Main Theorem. Section 5 contains description of the
dual cellulations of simplicial complexes, and an observation that the preimage through the
bonding map pn : Sn+1(v0, X)→ Sn(v0, X) of any subcomplex Q for the dual cellulation of
Sn(v0, X) is π1-injectively included in the sphere Sn+1(v0, X). In Section 6 we express any
closed subset Y ⊂ ∂X as inverse limit of some sequence of subcomplexes Yn ⊂ Sn(v0, X),
so that each Yn is π1-injectively included in the corresponding sphere. We do this using
the result of Section 5.

Finally, in Section 8 we make some further comments, ask questions and formulate
conjectures.

2. Pro-π1- and shape π1-saturated spaces.

In this section we recall the notions of fundamental pro-group and shape fundamental
group, and introduce two variants of the property of π1-saturation corresponding to those
two notions. Our main reference with the appropriate background is [MS].

Any pointed compact metric space (Z, z0) can be expressed as the inverse limit of a
sequence (Zn, zn) of pointed compact polyhedra equipped with PL bonding maps

qn+1,n : (Zn+1, zn+1)→ (Zn, zn).
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We will call any such expression a polyhedral expansion of (Z, z0). Associated to any such
expansion, there is an inverse sequence

π1(Zn, zn), (qn+1,n)∗ : π1(Zn+1, zn+1)→ π1(Zn, zn), n ∈ N

of fundamental groups. The shape fundamental group π̌1(Z, z0) of Z at z0 is defined as the
inverse limit

π̌1(Z, z0) := lim←−
(
π1(Zn, zn), (qn+1,n)∗

)
.

The shape fundamental group is well defined, i.e. does not depend on the choice of a
polyhedral expansion for (Z, z0).

If Z is locally path connected and semilocally simply connected then its shape funda-
mental group coincides with the ordinary fundamental group. Otherwise, the groups are
in general different. If Z is a Z-set boundary of an ANR X (e.g. when it is the Gromov
boundary of a group), then the shape fundamental group coincides with the fundamental
group at infinity of X . In this paper we will be interested in the situation when Z is the
Gromov boundary of a 7-systolic group.

A continuous map u : (Y, y0) → (Z, z0) between metric compacta induces a well
defined homomorphism u∨∗ : π̌1(Y, y0)→ π̌1(Z, z0). In particular, if Z is a compact metric
space and Y ⊂ Z is a closed subset then for any z0 ∈ Y the inclusion i : (Y, z0)→ (Z, z0)
induces the homomorphism i∨∗ : π̌1(Y, z0)→ π̌1(Z, z0).

Definition 2.1. A compact metric space Z is shape π1-saturated (or π̌1-saturated) if
for any closed subset Y ⊂ Z and any point z0 ∈ Y the corresponding homomorphism
i∨∗ : π̌1(Y, z0)→ π̌1(Z, z0) induced by the inclusion is injective.

Remarks and examples 2.2.
(1) Note that if Z contains a 2-disc then it is not π̌1-saturated. Indeed, in this case

Z contains a circle S1 such that the homomorphism i∨∗ : π̌1(S1, s0) = π1(S1, s0) →
π̌1(Z, s0) is trivial and thus not injective.

(2) By (1), a polyhedron H is π̌1-saturated iff dimH = 1.
(3) Spheres Sn and n-dimensional Menger compacta are not π̌1-saturated for n ≥ 2.
(4) It follows from the results of this paper, and a result of P. Zawíslak [Z], that the Pon-

triagin sphere and the Pontriagin surface Π2 are π̌1-saturated (they occur as Gromov
boundaries of some 7-systolic groups). The direct proof of this fact is probably not
hard.

(5) There exist π̌1-saturated metric compacta with arbitrary (finite) topological dimen-
sion. This follows from the constructions in [JS] of 7-systolic groups of arbitrary
dimension.

A more subtle information about metric compacta can be described in terms of pro-
groups, i.e. inverse sequences of groups viewed up to some natural equivalence relation.
We recall here only some basic facts related to this approach, referring the reader to [MS]
for further details.
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In the class inv-Group of inverse sequences of groups there is a natural notion of
morphism. To describe it, for any (Gn, hn+1,n) ∈ inv-Group and any n > k denote by
hn,k : Gn → Gk the composition homomorphism hk+1,k ◦ . . . ◦ hn,n−1. If (Gn, hn+1,n) and
(G′n, h

′
n+1,n) are in inv-Group then a morphism

f : (Gn, hn+1,n)→ (G′n, h
′
n+1,n)

consists of a function φ : N→ N and of homomorphisms fn : Gφ(n) → G′n, one for each n,
such that whenever n1 < n2 then there is m > max(φ(n1), φ(n2)) for which

fn1hm,φ(n1) = h′n2,n1
fn2hm,φ(n2),

i.e. the following diagram commutes

Gφ(n1) ← Gm → Gφ(n2)

↓ ↓
G′n1

←− G′n2

Composition of morphisms in inv-Group is defined in the obvious way.
Two morphisms f = (φ, fn) and g = (ψ, gn) from (Gn, hn+1,n) to (G′n, h

′
n+1,n) are

equivalent if for each n there is m > max(φ(n), ψ(n)) such that

fnhm,φ(n) = gnhm,ψ(n).

This defines an equivalence relation which respects compositions and thus allows to define
a new category pro-Group as follows. The objects in pro-Group are all inverse sequences
of groups and the morphisms are all equivalence classes of morphisms in inv-Group.

Given a pointed compact metric space (Z, z0) and its arbitrary polyhedral expansion
((Zn, zn), qn+1,n), the induced inverse sequence of fundamental groups

(
π1(Zn, zn), (qn+1,n)∗

)

is well defined up to an isomorphism in the category pro-Group. More precisely, different
polyhedral expansions of (Z, z0) yield induced inverse sequences of fundamental groups
that are isomorphic in pro-Group. The fundamental pro-group pro-π1(Z, z0) is the induced
inverse sequence of fundamental groups of a polyhedral expansion of (Z, z0), viewed up to
isomorphism in pro-Group.

Note that, since isomorphic inverse systems of groups have isomorphic inverse limits,
the fundamental pro-group pro-π1(Z, z0) determines uniquely the shape fundamental group
π̌1(Z, z0). It is also (in general) a much more subtle invariant of (Z, z0) than the latter.

As in the case of shape fundamental groups, a continuous map u : (Y, y0) → (Z, z0)
induces a well defined up to equivalence (or as a morphism in pro-Group) morphism

upro
∗ : pro-π1(Y, y0)→ pro-π1(Z, z0).
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A morphism f : X → Y in an arbitrary category is called a monomorphism provided
fg = fg′ implies g = g′ for any morphisms g, g′ : W → X . We recall from [MS] (Corollary 1
on p. 108) a useful sufficient condition for a morphism in pro-Group to be a monomorphism.

Lemma 2.3. Let F be a morphism in pro-Group given by a morphism

f = (φ, fn) : (Gn, hn+1,n)→ (G′n, h
′
n+1,n)

in inv-Group, and suppose that φ = idN and that each fn : Gn → G′n is injective. Then F
is a monomorphism.

We are now ready to introduce the notion of pro-π1-saturation.

Definition 2.4. A compact metric space Z is pro-π1-saturated if for any closed subset
Y ⊂ Z and any point z0 ∈ Y the morphism ipro

∗ : pro-π1(Y, z0) → pro-π1(Z, z0) induced
by the inclusion i : (Y, z0)→ (Z, z0) is a monomorphism in pro-Group.

Remarks 2.5.
(1) Any morphism in inv-Group induces a homomorphism between the corresponding

inverse limits, and equivalent morphisms induce equal homomorphisms. In particular,
a morphism in pro-Group induces a homomorphism between the corresponding inverse
limits. Moreover, the homomorphism of the inverse limits induced by a monomorphism
in pro-Group is injective.

(2) It follows from (1) that any compact metric space Z which is pro-π1-saturated is also
π̌1-saturated.

(3) Remarks and examples 2.2 hold true if we replace π̌1-saturation with pro-π1-satura-
tion.

Let ((Zn, zn), qn+1,n) be a polyhedral expansion of a pointed compact metric space
(Z, z0), and let z0 ∈ Y ⊂ Z be a closed subset of Z. It is possible to obtain a polyhedral
expansion for (Y, z0) out of a sequence of subpolyhedra zn ∈ Yn ⊂ Zn, with the restrictions
hn+1,n|Yn+1 : Yn+1 → Yn as bonding maps. If we are given such expansion for (Y, z0), then
the morphism

ipro
∗ : pro-π1(Y, z0)→ pro-π1(Z, z0)

induced by the inclusion is given by the natural morphism

f = (φ, fn) :
(
π1(Yn, zn), (qn+1,n|Yn+1)∗

)→ (
π1(Zn, zn), (qn+1,n)∗

)

in inv-Group such that φ = idN and fn = (in)∗ : π1(Yn, zn) → π1(Zn, zn), where in :
(Yn, zn) → (Zn, zn) are the inclusions. This description of the morphisms ipro

∗ will be
useful for establishing the property of pro-π1-saturation.

We now formulate a characterization of sequences Yn ⊂ Zn of subpolyhedra that give
polyhedral expansions for a closed subspace Y ⊂ Z. It follows fairly directly from Theorem
6 on p. 60 in [MS].
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Lemma 2.6. Let (Z, z0) be a pointed compact metric space, and let ((Zn, zn), qn+1,n) be
its polyhedral expansion. Denote by qn : (Z, z0) → (Zn, zn) the canonical maps from the
inverse limit (forming together the morphism associated to the inverse limit from (Z, z0)
to the inverse sequence). Let z0 ∈ Y ⊂ Z be a closed subset of Z, and let zn ∈ Yn ⊂ Zn
be a sequence of subpolyhedra. Then the sequence ((Yn, zn), qn+1,n|Yn+1) is a polyhedral
expansion for (Y, z0) iff the following conditions are satisfied:
(1) for each n we have qn+1,n(Yn+1) ⊂ Yn,
(2) for each n we have qn(Y ) ⊂ Yn, and
(3) for each n and for any open set U with qn(Y ) ⊂ U ⊂ Zn there is m > n such that

qm,n(Ym) ⊂ U (where qm,n := qn+1,n ◦ qn+2,n+1 ◦ . . . ◦ qm,m−1).

Condition (1) in above lemma ensures that ((Yn, zn), qn+1,n|Yn+1) is an inverse se-
quence. Condition (2) means that (qn|Y ) is a morphism from Y to this sequence. Con-
dition (3) guarantees that (qn|Y ) coincides with the morphism associated to the inverse
limit.

In Section 6 we will use Lemma 2.6 for constructing certain polyhedral expansions for
closed subsets in Gromov boundaries of 7-systolic complexes.

We finish the section with the following result, the proof of which exhibits usefulness
of Lemmas 2.3 and 2.6 for showing that a space is pro-π1-saturated.

Proposition 2.7. Any compact metric space X of topological dimension dimX = 1 is
pro-π1-saturated.

Proof: If dimX = 1 and x0 is any point of X , then (X, x0) has a polyhedral expansion(
(Xn, xn), (qn+1,n)

)
in which all Xn are graphs (see Theorem 3 on p. 90 or Remark 2 on

p. 91 in [MS]). If Y is a closed subspace of X with X−) ∈ Y , one can easily choose a
sequence of sub-polyhedra (i.e. subgraphs for appropriately subdivided graph structures)
Yn ⊂ Xn, with xn ∈ Yn, satisfying conditions (1)–(3) of Lemma 2.6. By Lemma 2.6,(
(Yn, xn), (qn+1,n)|Yn+1

)
is then a polyhedral expansion for Y .

Let i : Y → X and in : Yn → Xn be the inclusions. By the comment in the paragraph
after Remarks 2.5, the morphism ipro

∗ : pro-π1(Y, x0) → pro-π1(X, x0) is given by the
natural morphism

f = (φ, fn) :
(
π1(Yn, xn), (qn+1,n|Yn+1)∗

)→ (
π1(Xn, xn), (qn+1,n)∗

)

in inv-Group such that φ = idN and fn = (in)∗ : π1(Yn, xn)→ π1(Xn, xn).
Now, since Yn is a subgraph in Xn, the homomorphisms (in)∗ above are injective. By

Lemma 2.3, the morphism ipro
∗ is then a monomorphism, which completes the proof.

3. Systolic complexes and groups.

In this section we recall basic definitions and facts concerning systolic complexes and
groups, the objects studied in a recently introduced subject of simplicial nonpositive cur-
vature. Our main reference for this subject is [JS].
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Definition 3.1 (k-large complex). Given an integer k ≥ 5, a simplicial complex L
is k-large if it is flag, and if every full subcomplex of L homeomorphic to the circle S1

contains at least k edges. (Here flagness of L means that any finite set of vertices of L
pairwise connected with edges spans a simplex of L.)

We use k-largeness, by applying it to links in a simplicial complex, as a sort of local
curvature bound. Recall that a link of a simplicial complex X at its simplex σ, denoted
Xσ, is a subcomplex of X consisting of all simplices τ disjoint with σ and such that τ and
σ span a simplex of X .

Definition 3.2 (k-systolic complex and group). A simplicial complex X is k-systolic
if it is connected, simply connected and for any simplex σ the link Xσ is k-large. A
group is k-systolic if it acts geometrically (i.e. properly discontinuously and cocompactly)
by simplicial automorphisms on some k-systolic complex. The case k = 6 is the most
important one and thus we abbreviate 6-systolic to systolic.

Systolic complexes turned out to be good combinatorial analogs of nonpositively
curved (or CAT(0)) geodesic metric spaces. Though no way of reducing systolicity to
CAT(0) (for appropriately chosen metric) is known, it is established that systolic com-
plexes are contractible ([JS], Theorem B) while systolic groups are biautomatic and thus
semihyperbolic ([JS], Theorem E). Systolic complexes of groups are known to be devel-
opable ([JS], Theorem D).

If k > 6, the condition of k-systolicity is stronger, and corresponds to some kind
of negative curvature. In particular, 7-systolic complexes and groups are known to be
hyperbolic in the sense of Gromov ([JS], Theorem A).

Developability of systolic complexes of groups allowed to construct (in [JS]) numerous
examples of k-systolic complexes and groups, for any k and in arbitrary dimension. For
k ≥ 7 this gave examples of high dimensional word hyperbolic groups with unexpected
properties. For example, these groups contain no subgroups isomorphic to fundamental
groups of nonpositively curved closed manifolds of dimension ≥ 3, see Theorem A in [JS2].
Furthermore, by a result of D. Osajda [O], Gromov boundaries of these groups satisfy a
rather restricted property of strong hereditary asphericity. Both properties above do not
hold for the known word hyperbolic groups of dimensions above 2, except the systolic ones.
The main result of this paper establishes another such property - pro-π1-saturation of the
Gromov boundary.

We now turn to listing some basic properties of large and systolic complexes needed
later in this paper. We start with the following easy fact (see [JS], Fact 1.2(2)).

Lemma 3.3. Any full subcomplex of a k-large simplicial complex is k-large.

The next property is a nontrivial fact proved in [JS] as Proposition 1.4.

Lemma 3.4. For k ≥ 6, any k-systolic simplicial complex is k-large.
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Combining the above two lemmas we get the following.

Corollary 3.5. For k ≥ 6, any full subcomplex of a k-systolic simplicial complex is k-large.

Since links in flag simplicial complexes are full subcomplexes, we also get the following.

Corollary 3.6. Link Xσ at any simplex σ in a 6-large simplicial complex X is itself
6-large. In particular, this holds true if X is systolic.

Further properties of k-large simplicial complexes are related to the following concept
of 3-convexity. A subcomplex K in a simplicial complex L is 3-convex if it is full and for
any geodesic path γ in the 1-skeleton of L, connecting vertices of K lying at polygonal
distance 2 in L, the mid vertex of γ also belongs to K. A subcomplex K ⊂ L is locally
3-convex if for any simplex σ of K the link Kσ is 3-convex in the corresponding link Lσ.

The following property is fairly straightforward (see [JS], Fact 3.3(1)).

Lemma 3.7. Any 3-convex subcomplex in a flag simplicial complex L is locally 3-convex.
In particular, this holds true if L is k-large.

The property of π1-saturation for boundaries of 7-systolic complexes and groups will
be derived from the following π1-injectivity property of locally 3-convex subcomplexes.
This highly notrivial fact is a special case of Theorem 4.1(2) in [JS].

Proposition 3.8. Let S be a 6-large simplicial complex and let Q be its locally 3-
convex subcomplex. Then Q is π1-injective in S. More precisely, for any point q ∈ Q the
homomorphism i∗ : π1(Q, q)→ π1(X, q) induced by the inclusion i : Q→ S is injective.

Next properties that we need concern combinatorial balls and spheres in systolic com-
plexes.

Definition 3.9 (combinatorial ball). Let X be a simplicial complex and σ its any
simplex. For integer n ≥ 0, combinatorial balls Bn(σ,X) centered at σ are the subcom-
plexes of X defined recursively as follows: B0(σ,X) := σ and Bn+1(σ,X) is the union of
all simplices of X that intersect Bn(σ,X).

Clearly, the vertex set of the ball Bn(σ,X) coincides with the set of all vertices in X
remaining at polygonal distance from σ (in the 1-skeleton of X) ≤ n. However, in general
the ball needn’t to be the full subcomplex spanned on this set of vertices. In systolic
complexes the balls behave very nicely. The following property is extracted from Corollary
7.5 and Lemma 7.6 in [JS].

Lemma 3.10. Any ball Bn(σ,X) in a systolic simplicial complex X coincides with the
full subcomplex spanned by the set of all vertices of X at polygonal distance from σ (in
the 1-skeleton of X) ≤ n. Moreover, every ball is locally 3-convex in X .
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Next result is implicitly present but nowhere explicitly stated in [JS], and thus we
include its proof.

Lemma 3.11. Any ball B1(σ,X) in a 6-large simplicial complex X is 3-convex in X .

Proof: Note that, since X is 6-large, the shortest homotopically notrivial polygonal path
in X has length at least 6. It follows that B1(σ,X) is isomorphic with B1(σ̃, X̃), where X̃ is
the universal cover of X and σ̃ is a lift of σ. Now, since X is locally 6-large (Corollary 3.6),
the same is true for X̃, and hence the latter is systolic. By Lemma 3.10, B1(σ̃, X̃) is then
locally 3-convex in X̃ , and hence the same is true for B1(σ,X) in X . A similar argument
shows that, since B1(σ̃, X̃) is full in X̃ (Lemma 3.10), the same is true for B1(σ,X) in X .
We conclude by the following criterion for 3-convexity (Lemma 3.6 in [JS]): a connected
full and locally 3-convex subcomplex with polygonal diameter ≤ 3 in a 6-large simplicial
complex X is 3-convex in X .

Definition 3.12 (combinatorial sphere). The combinatorial sphere Sn(σ,X) centered
at a simplex σ of a simplicial complex X is the subcomplex of the ball Bn(σ,X) spanned
by the vertices remaining at polygonal distance n (in the 1-skeleton of X) from σ.

Note that, by Lemma 3.10, balls in a systolic complex X are full subcomplexes, and
hence the same holds true for spheres. In view of this, Corollary 3.5 implies the following.

Corollary 3.13. If X is a k-systolic simplicial complex for some k ≥ 6 then every sphere
Sn(σ,X) in X is k-large. In particular, every sphere in X is a flag complex.

Next result may be thought of as describing certain rather strong convexity property
of combinatorial balls in systolic complexes. It is a special case of Corollary 7.9 in [JS].

Lemma 3.14. Let X be a systolic complex and τ a simplex in some sphere Sn+1(σ,X).
Then
(1) the intersection Xτ ∩ Sn(σ,X) is nonempty, and it is a single simplex (called the

projection of τ on Sn(σ,X));
(2) if ρ is the projection of τ on Sn(σ,X) then the link [Bn+1(σ,X)]τ coincides with the

ball B1(ρ,Xτ).

4. Osajda’s inverse sequence.

In this sectiuon we recall from [O] the construction of an inverse sequence due to
Damian Osajda. This sequence consists of combinatorial spheres in a 7-systolic complex,
with appropriately chosen bonding maps, and its inverse limit coincides with the Gromov
boundary of the complex. The maps in the sequence are simplicial (with respect to ap-
propriate subdivision), and their closer study allows to deduce various properties of the
limit.
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Let X be a 7-systolic simplicial complex, and let v0 be a fixed vertex of X . Osajda’s
inverse sequence consists of combinatorial spheres Sn(v0, X) centered at v0. Construction
of the bonding maps pn : Sn+1(v0, X) → Sn(v0, X) is based on the following convexity
property, which is a reformulation of Lemma 3.1 in [O]. We call the vertices in a simplicial
complex adjacent if they are connected with an edge.

Lemma 4.1. Let v1 and v2 be adjacent vertices of the sphere Sn+1(v0, X), and let ρ1, ρ2

be their projections on Sn(v0, X). Then one of the simplices ρi is a face of the other.

Consider the first barycentric subdivision [Sn(v0, X)]′, and for a simplex ρ of Sn(v0, X)
denote by bρ the barycenter of ρ viewed as a vertex of [Sn(v0, X)]′. The assertion of Lemma
4.1 reads then as follows: the vertices bρ1 , bρ2 are adjacent in [Sn(v0, X)]′.

Denote by π(v) the projection of a vertex v ∈ Sn+1(v0, X) on Sn(v0, X). By the above
property and the fact that spheres are flag (because they are 7-systolic, see Coroillary 3.13),
the assignment v → bπ(v) extends to a well defined simplicial map pn : Sn+1(v0, X) →
[Sn(v0, X)]. The maps pn are the bonding maps in Osajda’s inverse sequence.

Damian Osajda has shown the following result (Lemma 4.1 in [O]).

Proposition 4.2. Let X be a locally finite and finite dimensional 7-systolic simplicial
complex. Then the Gromov boundary ∂X of X is homeomorphic to the inverse limit

lim←−
(
Sn(v0, X), pn

)

of the Osajda’s inverse sequence.

5. Dual cellulations of spheres.

Let S be any simplicial complex. Define dual cellulation Sdual as follows. Let S′ be
the first barycentric subdivision of S, and for any simplex σ of S let bσ be the barycenter
of σ, viewed as a vertex of S′. Recall that vertices of S′ are in 1–1 correspondence with
simplices of S, via the map σ → bσ.

Given any simplex σ of S, denote by σdual, and call the dual cell of σ, the subcomplex
of S′ spanned by the vertex set {bτ : τ ⊃ σ}. The dual cellulation Sdual is then the
decomposition of S′ formed of all dual cells σdual : σ ⊂ S. In fact, Sdual is isomorphic, as a
stratified space, to the geometric realization of the reversed face poset of S (i.e. the poset
of all nonempty faces of S with reversed order).

A dual subcomplex of S is any subcomplex Q of S′ which is the union of certain family
of dual cells.

The main result of this section, which reveals significance of the dual cellulations, is
the following.

Theorem 5.1. Let X be a 7-systolic simplicial complex, and v0 ∈ X a vertex. Let
pn : Sn+1(v0, X)→ [Sn(v0, X)]′ be the bonding map in the Osajda’s inverse sequence for
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(X, v0). Then for any dual subcomplex Q of Sn(v0, X) the preimage p−1
n (Q) is a locally

3-convex subcomplex of the sphere Sn+1(v0, X).

Theorem 5.1 together with Proposition 3.8 imply the next result, which will play
essential role in the proof of Theorem A. Recall that a topological subspace Y ⊂ Z is
π1-injective in Z if for any point y ∈ Y the induced homomorphism π1(Y, y)→ π1(Z, y) is
injective.

Corollary 5.2. Under assumptions of Theorem 5.1, for any dual subcomplex Q of
Sn(v0, X) the preimage p−1

n (Q) is π1-injective in the sphere Sn+1(v0, X).

To prove Theorem 5.1, we need a serie of lemmas and some terminology. Let X be
a simplicial complex, τ its any simplex, and m ≥ 1 an integer. The ball complement
[Bm(τ,X)]cX in X is the full subcomplex spanned on the set of those vertices of X which
are at polygonal distance ≥ m from τ . Obviously, we have Bm(τ,X) ∩ [Bm(τ,X)]cX =
Sm(τ,X).

Lemma 5.3. Let L be a 7-large simplicial complex and τ its simplex. Then
(0) for any m ≥ 1 the ball complement [Bm(τ, L)]cL is 7-large;
(1) the sphere S1(τ, L) is 3-convex in the complement [B1(τ, L)]cL;
(2) the sphere S2(τ, L) is locally 3-convex in the complement [B2(τ, L)]cL.

Proof: Part (0) follows directly from Lemma 3.3.
To prove (1), let γ = (u0, u1, u2) be a polygonal path embedded in [B1(τ, L)]cL, with

its endpoints u0, u2 contained in S1(τ, L). Suppose also that u1 is not in S1(τ, L). We need
to show that the endpoints are at distance 1 in [B1(τ, L)]cL. To see this, note that we can
view γ as embedded in L, with its endpoints in the ball B1(τ, L), and with u1 outside this
ball. Now, since B1(τ, L) is 3-convex in L (see Lemma 3.11), it follows that u0, u2 are at
distance 1 in B1(τ, L). However, both u0, u2 belong to the sphere S1(τ, L), which is a full
subcomplex of L. Thus u0, u2 are at distance 1 in S1(τ, L), and hence also in [B1(τ, L)]cL.

To prove (2), let σ be a simplex of S2(τ, L). We need to show that the link [S2(τ, L)]σ
is 3-convex in the link [[B2(τ, L)]cL]σ. To do this, we will apply the already proved part (1)
of the lemma. For that purpose, observe that

[[B2(τ, L)]cL]σ = (Lσ \ [B2(τ, L)]σ) ∪ [S2(τ, L)]σ.

Note also that, if ρ is the projection of σ on the sphere S1(τ, L), then [B2(τ, L)]σ =
B1(ρ, Lσ) and [S2(τ, L)]σ = S1(ρ, Lσ). In particular, we get

[[B2(τ, L)]cL]σ = [Lσ \B1(ρ, Lσ)] ∪ S1(ρ, Lσ) = [B1(ρ, Lσ)]cLσ
.

Thus, we may apply (1) for L replaced with Lσ and τ replaced with ρ. This completes the
proof.

Next lemma requires further terminology. Let S be a simplicial complex, and suppose
its dimension is d. A dual k-skeleton S[k]

dual is the dual subcomplex of S being the union of
the dual cells σdual for all σ ⊂ S with dimσ ≥ d− k.
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Lemma 5.4. Under notation of Theorem 5.1, put S = Sn(v0, X) and d = dimS. Let σ be
a simplex of S of dimension d−k and denote by τ its projection on the sphere Sn−1(v0, X).
(1) We have

(5.4.1.1) p−1
n (σdual) = [B2(τ,Xσ)]cXσ

and

(5.4.1.2) p−1
n (σdual) ∩ p−1

n (S[k−1]
dual ) = S2(τ,Xσ).

(2) Let σ̄ be a simplex of S of dimension d− k, σ̄ �= σ. Then

p−1
n (σdual) ∩ p−1

n (σ̄dual) ⊂ p−1
n (S[k−1]

dual ).

Proof: First, observe that p−1
n (σdual) ⊂ Xσ. Indeed, if v is a vertex in p−1

n (σdual) then
pn(v) = bπ for some simplex π that contains σ. Since v and π span a simplex of X , the
same holds for v and σ, and thus v ∈ Xσ. The inclusion follows then from the fact that
Xσ is full in X .

Second, note that σdual is a full subcomplex of S′, and thus the preimage p−1
n (σdual) is

a full subcomplex in the sphere Sn+1(v0, X). In view of the inclusion shown in the previous
paragraph, to get (5.4.1.1) it is sufficient to check that a vertex v of Xσ is in p−1

n (σdual) iff
distXσ

(v, τ) ≥ 2.
Since Xσ ∩Bn(v0, X) = B1(τ,Xσ), we immediately get one implication in the above

statement. To get the other implication, suppose distXσ
(v, τ) ≥ 2. It follows that v /∈

Bn(v0, X), hence v ∈ Sn+1(v0, X). Suppose that pn(v) = bπ. Since π = Res(v,X) ∩
Bn(v0, X), and since v and σ span a simplex of X , we get that σ ⊂ π. Thus bπ ∈ σdual,
and (5.4.1.1) follows.

To prove (5.4.1.2), note that the dual skeleton S
[k−1]
dual is a full subcomplex of S′.

Consequently, p−1
n (σdual) ∩ p−1

n (S[k−1]
dual ) is a full subcomplex of p−1

n (σdual). Thus, we need
to show that a vertex v of p−1

n (σdual) is in p−1
n (σdual) ∩ p−1

n (S[k−1]
dual ) iff distXσ

(v, τ) = 2.
Let v be a vertex of p−1

n (σdual) ∩ p−1
n (S[k−1]

dual ). It follows that pn(v) = bπ for some
simplex π containing σ and of dimension ≥ d − (k − 1). In particar, π strictly contains
σ. Let u be a vertex of π not contained in σ. Since u ∈ [Bn(v0, X)]σ = B1(τ,Xσ), we
have a path of length 2 in Xσ from v to τ , through u. Thus distXσ

(v, τ) = 2. A similar
argument, which we skip, gives the converse implication, hence (5.4.1.2).

To prove (2), it is sufficient to show that σdual∩ σ̄dual ⊂ S
[k−1]
dual . We omit the straight-

forward argument.

Part (1) of Lemma 5.4, together with Lemma 5.3, imply the following.

Corollary 5.5. Under notation of Lemma 5.4, the intersection p−1
n (σdual) ∩ p−1

n (S[k−1]
dual )

is locally 3-convex in the preimage p−1
n (σdual).
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Lemma 5.6. Under notation of Theorem 5.1, put S = Sn(v0, X). Then p−1
n (S[k−1]

dual ) is

locally 3-convex in p−1
n (S[k]

dual).

Proof: By Lemma 5.4(2), the complex p−1
n (S[k]

dual) may be viewed as obtained from the
complex p−1

n (S[k−1]
dual ) by attaching to it, independently, the complexes p−1

n (σdual) for all
σ in S with dimσ = d − k. Thus, to prove the lemma, it is sufficient to prove that for
each attached complex p−1

n (σdual), its intersection with p−1
n (S[k−1]

dual ) is locally 3-convex in
it. Since this is exactly the assertion of Corollary 5.5, the proof is complete.

Our last preparatory result, the easy proof of which we omit, is the following.

Lemma 5.7. Under notation of Lemma 5.4, let v be a vertex of the dual cell σdual not
contained in the dual skeleton S[k−1]

dual . Then all vertices of S[k]
dual adjacent to v are contained

in σdual.

Proof of Theorem 5.1: Put Q[k] = Q ∩ S[k]
dual for 0 ≤ k ≤ d = dimS, and call it the

k-skeleton of the dual subcomplex Q. We will show inductively that p−1
n (Q[k]) is locally

3-convex in p−1
n (S[k]

dual). For k = d this clearly gives the assertion.
Before getting to induction, note that all skeletaQ[k] and S[k]

dual are full subcomplexes of
S′. Hence the same is true for their preimages through pn as subcomplexes in Sn+1(v0, X).
In particular, all preimages p−1

n (Q[k]) and p−1
n (S[k]

dual) are flag simplicial complexes (because
Sn+1(v0, X) is flag, see Corollary 3.13).

To start induction, note that both S[0]
dual and Q[0] are 0-dimensional, and thus p−1

n (Q[0])
is the union of some of the connected components of p−1

n (S[0]
dual). In particular, it is locally

3-convex in the latter. This gives the inductive assertion for k = 0.
Now, suppose for some 0 ≤ k < d we know that p−1

n (Q[k]) is locally 3-convex in
p−1
n (S[k]

dual). We need to show that p−1
n (Q[k+1]) is locally 3-convex in p−1

n (S[k+1]
dual ).

Fix a simplex σ of p−1
n (Q[k+1]). If pn(σ) is not contained in Q[k] then Lemma 5.7

easily implies that [p−1
n (Q[k+1])]σ = [p−1

n (S[k+1]
dual )]σ, hence local 3-convexity at σ.

It remains to deal with the case when pn(σ) ⊂ Q[k]. Let (u0.u1, u2) be a path em-
bedded in the link [p−1

n (S[k+1]
dual )]σ, with its endpoints u0, u2 in [p−1

n (Q[k+1])]σ, and with u1

not in this subcomplex. We need to show that u0, u2 are adjacent in [p−1
n (S[k+1]

dual )]σ, or
equivalently in p−1

n (S[k+1]
dual ). We consider cases corresponding to positions of u1.

Case 1. If u1 ∈ [p−1
n (S[k]

dual)]σ, then necessarily u0, u2 ∈ [p−1
n (Q[k])]σ. This follows

fairly directly from Lemma 5.7. The fact that u0, u2 are adjacent as required follows then
from local 3-convexity of [p−1

n (Q[k])]σ in [p−1
n (S[k]

dual)]σ.
Case 2. If u1 /∈ [p−1

n (S[k]
dual)]σ, we also have If u1 /∈ p−1

n (S[k]
dual). Let τ be the (unique)

(d − k − 1)-simplex of S with u1 ∈ p−1
n (τdual). It follows from Lemma 5.7 that u0, u2 ∈

p−1
n (τdual). Since τdual is not contained in Q[k+1], we have

u0, u2 ∈ p−1
n (τdual) ∩ p−1

n (Q[k]) ⊂ p−1
n (τdual) ∩ p−1

n (S[k]
dual).

The fact that u0, u2 are adjacent as required follows then from Corollary 5.5.
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6. Closed subsets in boundaries of 7-systolic complexes.

In this section we describe some, rather special, polyhedral expansions for arbitrary
closed subsets in Gromov boundaries of 7-systolic complexes.

Let X be a locally finite infinite 7-systolic simplicial complex, and let v0 be a vertex
of X . Let (Sn(v0, X), pn) be the inverse sequence of D. Osajda associated to (X, v0), as
described in Section 3. Since the spheres Sn(v0, X) are all nonempty and finite simplicial
complexes, the inverse limit

lim←−
(
Sn(v0, X), pn

)

is a nonempty compact Hausdorff space ([MS], Theorem 3 on p. 58). Moreover, by
Proposition 4.2, this inverse limit coincides with the Gromov boundary ∂X of X , and thus
it is a compact metric space.

To be consistent with the notation of Section 2, we think of the projections pn in the
Osajda’s inverse sequence as of the bonding maps qn+1,n. Accordingly, we also use the
maps qn,m : Sn(v0, X) → Sm(v0, X) for any n > m, and the maps qn : ∂X → Sn(v0, X),
as defined in Section 2 (in the statement of Lemma 2.6).

Let Y ⊂ ∂X be a nonempty closed subset, and let z0 ∈ Y be any point. Put zn :=
pn(z0) and recall that the inverse sequence

(
(Sn(v0, X), zn), pn

)

is a polyhedral expansion for (∂X, z0).
We now describe a sequence of subpolyhedra Yn ⊂ Sn(v0, X). For each n consider the

dual cellulation of the sphere Sn = Sn(v0, X). Let Wn be the smallest dual subcomplex of
Sn containing the image qn(Y ). Let Qn be the union of all dual cells of Sn that intersect
Wn. Cleary, Qn is also a dual subcomplex of Sn. Now, put Yn+1 := p−1

n (Qn) for each
n ∈ N, and Y1 := S1. The main result of this section is the following.

Proposition 6.1. Under assumptions and notation as above, the sequence of pointed
polyhedra (Yn, zn) equipped with the restricted maps pn|Yn+1 , is a polyhedral expansion
of (Y, z0).

Proof: We will apply Lemma 2.6 with Z = ∂X and Zn = Sn = Sn(v0, X). It is sufficient
to verify conditions (1)–(3) of this lemma.

To check condition (1), recall from Section 3 the definition of combinatorial balls (or
neighbourhoods) in simplicial complexes. Observe that we have Qn = B2(Wn, S

′
n) for each

n, where S′n is the first barycentric subdivision of Sn(v0, X).
By defintion of pn, the preimage p−1

n (Wn) is a simplicial subcomplex of Sn+1 (for the
original, not subdivided, simplicial structure on Sn+1). Thus the ball B1(p−1

n (Wn), S′n+1)
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is a dual subcomplex of Sn+1. It follows that Wn+1 ⊂ B1(p−1
n (Wn), S′n+1), because clearly

qn+1(Y ) ⊂ p−1
n (Wn). Consequently, we get

Qn+1 = B2(Wn+1, S
′
n+1) ⊂ B3(p−1

n (Wn), S′n+1).

By the obvious relationships between combinatorial neighbourhoods in Sn+1 and S′n+1 we
also get

B3(p−1
n (Wn), S′n+1) ⊂ B2(p−1

n )

and hence
Qn+1 ⊂ B2(p−1

n (Wn), Sn+1).

Now, since pn is a simplicial map from Sn+1 to S′n, we have

Qn+1 ⊂ B2(p−1
n (Wn), Sn+1) ⊂ p−1

n (B2(Wn, S
′
n)) = pn−1(Qn).

Thus
pn+1(Yn+2) = pn+1(p−1

n+1(Qn+1)) = Qn+1 ⊂ p−1
n (Qn) = Yn+1,

which verifies condition (1).

Condition (2) obviously holds by the definition of Yn.

To see that condition (3) holds true, consider on each of the simplicial complexes
Sn = Sn(v0, X) the standard piecewise Euclidean metric dn. Let U be an open set with
qn(Y ) ⊂ U ⊂ Sn. By compactness of qn(Y ), there is ε such that Nε(qn(Y ), Sn) ⊂ U , where

Nε(qn(Y ), Sn) := {x ∈ Sn | dn(x, qn(Y )) ≤ ε}.

On the other hand, by definition of Qn, we have (for each n) that Qn ⊂ N4(qn(Y )).
Since each projection pn is a simplicial map from Sn+1 to S′n, there is a constant c

(not depending on n), with 0 < c < 1, such that

dn(pn(x), pn(y)) ≤ c · dn+1(x, y)

for any points x, y ∈ Sn+1. Consequently, for any m > n and any x, y ∈ Sm we have

dn(qm,n(x), qm,n(y)) ≤ cm−n · dm(x, y).

It follows that

qm,n(Qm) ⊂ qm,n(N4(qm(Y ))) ⊂ N4·cm−n(qm,nqm(Y )) = N4·cm−n(pn(Y )).

Thus, if we take m such that 4cm−n < ε, we get

qm,n(Qm) ⊂ Nε(qn(Y )) ⊂ U.
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Since qm,n(Qm) = qm+1,np
−1
m (Qm) = qm+1,n(Ym+1), we get qm+1,n(Ym+1) ⊂ U , and the

proposition follows.

7. Proof of the Main Theorem

Equipped with the preparatory results of Sections 5 and 6, we are now ready to give
a proof of the Main Theorem stated in the Introduction.

Let X be a locally finite 7-systolic simplicial complex. If X is finite, its Gromov
boundary is empty and there is nothing to prove. If X is infinite, its Gromov boundary
∂X is a compact metric space. Let Y ⊂ ∂X be a closed subset and let z0 ∈ Y be a point.
We need to show that the morphism

ipro
∗ : pro-π1(Y, z0)→ pro-π1(∂X, z0)

induced by the inclusion i : Y → ∂X is a monomorphism in the category pro-Group.
Having chosen a vertex v0 ∈ X , let (Sn(v0, X), pn) be the inverse sequence of D.

Osajda associated to (X, v0), as described in Section 4. Following the notation introduced
in Section 6 put zn = qn(z0), and consider the polyhedral expansion ((Sn(v0, X), zn), pn)
for (∂X, z0). Consider also the polyhedral expansion ((Yn, zn), pn|Yn+1) for (Y, z0), as
described in Section 6.

As it was explained in Secton 2 (after Remarks 2.5), the morphism ipro
∗ is given by

the morphism (in inv-Group)

f = (φ, fn) =
(
π1(Yn, zn), (pn|Yn+1)∗

)→ (
π1(Sn(v0, X), zn), (pn)∗

)

such that φ = idN and fn = (in)∗ : π1(Yn, zn) → π1(Sn(v0, X), zn), where in : Yn →
Sn(v0, X) denote the inclusions.

Now, since for each n we have Yn+1 = p−1
n (Qn), where Qn is a dual subcomplex

in Sn(v0, X), it follows from Theorem 5.1 that the homomorphism (in)∗ is injective. By
Lemma 2.3, this means that ipro

∗ is a monomorphism, which completes the proof.

8. Comments, questions and speculations.

We discuss some context in which the property of pro-π1-saturation may appear in-
teresting for its further study. This context is mostly related to the problem of describing
the class of all topological spaces that are (homeomorphic to) Gromov boundaries of word
hyperbolic groups. Recall that if a word hyperbolic group splits over a finite or a virtually
cyclic group then its Gromov boundary is some combination of the Gromov boundaries of
the factors. Thus, for classification purposes it makes sense to restrict attention to groups
that do not split. We will say that a group is JSJ-indecomposable if it does not split over
a finite or a virtually cyclic subgroup.

1. Pro-π1-saturation looks like some kind of 1-dimensionality, while hereditary aspheric-
ity as some kind of at-most-2-dimensionality. Is it true that every pro-π1-saturated
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compact metric space is hereditarily aspherical? Is it true in the class of Gromov
boundaries of word hyperbolic groups? Do the two notions coincide in the latter class
of spaces?

2. The 2-sphere and the 2-dimensional universal Menger space M2,5 are not pro-π1-
saturated. Find other examples of explicit 2-dimensional spaces that are Gromov
boundaries of JSJ-indecomposable word hyperbolic groups and which are not pro-π1-
saturated. Is it plausible that the class of not pro-π1-saturated Gromov boundaries
of hyperbolic groups (viewed up to homeomerphism) is very restricted and could be
completely described?

3. By a result of P. Zawíslak [Z], Pontriagin sphere and Pontriagin surface Π2 are Gromov
boundaries of certain 7-systolic groups (fundamental groups of some 3-dimensional
locally 7-large pseudomanifolds). By our Main Theorem, these spaces are pro-π1-
saturated. Give a direct proof of this fact. Prove (or disprove) that Pontriagin surfaces
Πp for primes p �= 2, which occur as Gromov boundaries of certain right-angled Coxeter
groups (see [Dr]), are pro-π1-saturated.

4. Note that, except for the examples mentioned in the previous comment, Gromov
boundaries of 7-systolic groups are not known or described explicitly. Even in di-
mension 2 there seem to be plenty of such spaces, and certainly there is a lot of
questions. For example, are Pontriagin surfaces Πp Gromov boundaries of 7-systolic
groups? More precisely, are they Gromov boundaries of fundamental groups of some
3-dimensional locally 7-large simplicial complexes? Can we characterize or describe
in some explicit way Gromov boundary of the fundamental group of an orientable
4-dimensional locally 7-large pseudomanifold? Is this space (i.e. boundary) unique?

5. Trees of manifolds (called also Jakobsche spaces X(Mn), see [F] or [J]) in dimensions
n ≥ 3 are not pro-π1-saturated. They are obtained as inverse limits of iterated con-
nected sums of many copies of the manifold Mn, and it is not hard to realize that they
contain spheres of dimension n− 1. For n = 3, 4 some of these spaces are homeomor-
phic to Gromov boundaries of certain JSJ-indecomposable word hyperbolic groups
(see Theorem 4.1 and Remark 4.2 in [PS]). Find other explicit topological spaces,
especially in dimensions above 4, different from spheres and Sierpiński compacta,
which are not pro-π1-saturated and which are homeomorphic to Gromov boundaries
of JSJ-indecomposable word hyperbolic groups. Note that it is not known whether
the universal Menger compacta in dimensions above 4 occur as Gromov boundaries
of some groups. These spaces are clearly not pro-π1-saturated.

6. Is the class of word hyperbolic groups that are not pro-π1-saturated closed under
amalgamated free product over subgroups that are (a) infinite cyclic, (b) free, (c)
surface groups, (d) any subgroups (perhaps undistorted)?

7. It is not hard to give examples of word hyperbolic systolic groups which are not 7-
systolic in any obvious way. On the other hand, we have no tool to distinguish word
hyperbolic groups that are systolic but not 7-systolic. Is it true that Gromov boundary
of every word hyperbolic systolic group is pro-π1-saturated?

8. Systolic groups are shown in [JS2] to have the coarsely invariant property of asymptotic
hereditary asphericity. Are Gromov boundaries of all word hyperbolic asymptotically
hereditarily aspherical groups pro-π1-saturated?
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9. An explicit class of groups that have pro-π1-saturated Gromov boundary is provided
by right-angled Coxeter groups with 7-large nerves. As we explain below, this class
contains examples with boundaries of arbitrary finite dimension. Recall that a flag
simplicial complex N determines the right-angled Coxeter group WN given by the
Coxeter system 〈S|R〉, where S coincides with the vertex set of N and R = {(ss′)2 :
s and s′ are adjacent in N}. N is then called the nerve of WN .

It was shown by Gromov that if N is 5-large (equivalently, satisfies the flag-no-square
condition) then WN is word hyperbolic (Corollary on p. 132 in [G]). In particular, this
holds true if N is 7-large. Moreover, the virtual cohomological dimension vcd(WN )
can be computed in terms of some homological properties of N , and if N is an n-
dimensional orientable pseudomanifold, this computation gives vcd(WN ) = n + 1
(see [Da], Corollary 13.3.5(ii), with T = ∅ and k = 0). Since, by the construction
of T. Januszkiewicz and the author, 7-large orientable pseudomanifolds do exist in
arbitrary dimension (see Corollary 19.2 in [JS]), the class of groups that we consider
in this comment contains examples with arbitrary virtual cohomological dimension.
By a result of Bestvina and Mess ([BM], Corollary 1.4(e)), if Γ is a virtually torsion
free word hyperbolic group then dim ∂Γ = vcd(Γ)−1. By applying this to groups WN

with 7-large nerves N , we see that their boundaries have arbitrary finite dimension.

To see that boundaries ∂WN of groups as above are pro-π1-saturated, we will show
that these groups are 7-systolic and then apply Main Theorem. We conclude 7-
systolicity by the following (rather sketchy) line of argument. A right-angled Coxeter
group WN acts geometrically by automorphisms on some simply connected cubical
complex X whose link at every vertex is isomorphic to N (see [Da], Proposition 7.3.4
together with Example 7.3.6, or [Dr], paragraph just before Proposition 3.1). We
convert X into a simplicial complex by the following rather general procedure that
we call thickening. (This procedure was first invented by T. Januszkiewicz and then
independently by D. Osajda.) Replace each cubical face C of X with the abstract
simplex σC spanned on the vertex set of C. Doing this consistently, we get the
simplicial complex Th(X), which is rather easily seen to have the same homotopy
type as X , thus being simply connected. It is an exercise (which we leave to the
reader) to show that if the vertex links of X are 7-large (which is the case when
N is 7-large), then the vertex links of Th(X) are also 7-large. This is sufficient for
concluding that Th(X) is 7-systolic. Finally, it is clear that the group WN acts on
the thickened complex Th(X) geometrically, which implies that it is 7-systolic.

10. We have shown in the previous comment that Gromov boundaries of right-angled Cox-
eter groups with 7-large nerves are pro-π1-saturated. On the other hand, if the nerve
of a hyperbolic right-angled Coxeter group contains a full subcomplex homeomorphic
to a sphere of dimension ≥ 2 then Gromov boundary of this group contains a sphere of
the same dimension (corresponding to the boundary of the parabolic subgroup corre-
sponding to vertices of the subcomplex), and thus it is not pro-π1-saturated. Is it true
that if a nerve of a hyperbolic right-angled Coxeter group contains no full subcomplex
homeomorphic to a sphere of dimension ≥ 2 then Gromov boundary of this group is
pro-π1-saturated?
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