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Let M be a closed smooth n-dimensional manifold. We want to
define what it means for M to be /arge.

Definition
> Let X be a metric space and Y be a topological space. A
map f: X — Y is uniformly cobounded if there exist D such
that for all y € Y we have diam(f~1(y)) < D.
» The macroscopic dimension of X, denoted dimm,c(X), is the

minimal k such that there exist a k-dimensional simplicial
complex K and a uniformly cobounded map f: X — K.
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Large manifolds

In our context: X = M. _
Note that M is itself a simplicial complex, thus dimp.(M) < n.
If dimmc(M™) = n, then M is macroscopically large.

Example

> If w1 (M) is finite, then dimpuc(M) = 0.
E.g. if M admits a metric of positive sectional curvature.

> If M2 R", then dimmc(M) = n.
E.g. if M admits a metric of non-positive sectional curvature.

» Let f: M — Bmi(M) be a map classifying the universal
bundle. If £.([M]) =0 € Hy(Bm1(M),Z), then we can assume
that the image of f is contained in Bry(M)I"=1. Moreover,
the lift of f, f: M — E771(I\/l)[”_1], is uniformly cobounded.
Thus M is not macroscopically large.
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Gromov Conjecture

If M" admits a Riemannian metric of positive scalar curvature,
then dimpuc(M) < n—2.

Scalar curvature is a function s: M — R defined in terms of the
Riemann tensor. It is a relatively weak notion of curvature.

Prototypical example
Consider M" = N x S2. Then:

—_——

dimme(N x 52) = dimme(N x §2) = dimme(N) < n — 2.

Gromov Conjecture was proven for many manifolds by Bolotov and
Dranishnikov.
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Large manifolds

Let us put macroscopic dimension into a broader context.
There are different notions of large manifolds.

» Macroscopically large manifolds as defined by Gong-Yu

» Enlargeable manifolds

» Hypereuclidean or hyperspherical universal cover
Gromov-Lawson: If a spin manifold M admits a Riemannian PSC
metric, then M is not enlargeable.
Definition
M is enlargeable if for every € > 0 there exist an orientable cover

of M which admits an e-contracting map onto S” which is
constant at the infinity and of non-zero degree.
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Consider a classifying map f: M — Bmi(M). We are interested in
f([M]) € Hp(Bm1(M), Q). If £.([M]) = 0 then M is rationally
inessential.

Theorem (Brunnbauer-Hanke)

Let m be a finitely generated group and n € N. For each notion of
largeness from the above list, there exist a linear subspace
H:™ < Hp(Bm, Q) with the following property:

f([M") ¢ H:™ <« M is large in the respective sense.
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Homological characterisation

Theorem (Dranishnikov)

Assume that Br is compact. There exist H"® < H,(Bw,Z) such
that:

f([M") ¢ HI <« M is macroscopically large.

Rem.: H;™ = kernel of the comparision map H,(Bm;Z) — H,’f(é?r; Z).

Dranishnikov conjectured that this theorem is true over Q.
Theorem (M.)

For every n > 3 there exist macroscopically large, rationally
inessential closed smooth n-manifolds. They are not large for all
large notions by the Brunnbauer-Hanke theorem.
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Let L be a flag simplicial complex of dimension n.

For every vertex v of L we consider a mirror F, = all simplices in
the barycentric subdivision of L which contain v.

Denote by C(L) the cone of L.

The reflection trick: a recipe how to glue up some number of
copies of C(L) along mirrors in such a way that the resulting
space, denoted by M, is aspherical.
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The reflection trick of Davis

Special example:

We color mirrors of L on colors ey, ..., e, such that non-disjoint
mirrors have different colors. Assume that these colors make a
linear basis of an n+ 1 dimensional vector space V over the field
with two elements.

M =C(L)x V/~,

where ~ is defined as follows: assume that we are in a cone
labelled by v and we cross a mirror colored by e in point x. Then
we find ourself in the same point x, but in the cone labelled by
v+ e.
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The reflection trick of Davis

We need the following properties:
» M), is aspherical, thus Bmi(M) = M.
» If L is a triangulation of a sphere, then M, is a manifold.

» m1(M) is a torsion-free finite index subgroup of a right angled
Coxeter group.
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Outline of the construction

The construction uses the work of Davis and Januszkiewicz on
small covers.

Step 1: The complex.

Let L be an n-dimensional complex. Assume that S < L is a
subcomplex of L which is topologically an (n — 1)-dimensional
sphere. Assume moreover that [S] € H,_1(L; Z) is a non-trivial
torsion class.

Using the reflection trick we construct an aspherical space M,
together with a subcomplex Ns given by a subcomplex S. Since S
is a sphere, Ns is a manifold.

Ns = C(S) X \//N < C(L) X V/N =M,

Step 2: The class.
Because of the properties of [S], the class [Ns] € H,(M; Z) is
non-trivial and torsion. Moreover: [Ns] ¢ H;™.
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Outline of the construction

Theorem (Dranishnikov)
There exist H < H,(M_, Z) such that:

f([M]) ¢ H® <« M is macroscopically large.

Where f: M — My is a classifying map.
Now: M = Ns, f is an inclusion, but it is not a classifying map.

Step 3: Surgery.
We perform a surgery on Ns to obtain a new manifold N together
with a map f: N — M such that f is now a classifying map and

f([N]) = [Ns].

Thus: N is macroscopically large and rationally inessential.
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Gromov Conjecture

Gromov Conjecture

If M" admits a Riemannian metric of positive scalar curvature,

then dimp,c(M) < n—2.

If N is spin then, by a result of Bolotov and Dranishnikov, N does
not support any Riemannian metric of positive scalar curvature.

In general Gromov Conjecture for N is open.
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