
Quasimorphisms, Diff0(S , area) and L
p-norm.

Michaª Marcinkowski
Wrocªaw University

Talk at Tulane University, 18.10.2021

joint work with M. Brandenbursky and E. Shelukhin

Michaª Marcinkowski Quasimorphisms, Diff0(S, area) and L
p-norm.



De�nitions

Let S be a compact oriented surface.

We consider the group

Diff0(S , area)

of all di�eomorphisms preserving the area and isotopic to the

identity.

Isotopic do the identity means, that there exists a family {ft} of
di�eomorphisms in Diff0(S , area) such that f0 = Id and f1 = f .
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Exmaples

Pseudo-rotations on a disc: in the polar coordinates

f (θ, r) = (θ + α(r), r), α is any function.

Point pushing maps along loops (or paths).
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Norms on Diff0(S , area)

On Diff0(S , area) (or its big subgroup) there are interesting norms

of di�erent �avours:

The Hofer norm (symplectic geometry)

The fragmentation (more combinatoric)

The Lp-norm (dynamics, geometry)

Now if f ∈ Diff0(S , area) one can i.e., ask if |f n| grows linearly
(then we say f is undistorted).

In general we want to embed �nitely generated subgroups in

Diff0(S , area) and we want to know what is the quality of this

embedding.
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The L1-norm of Diff0(S , area)

Let {ft} be an isotopy connecting Id with f1 = f .

Let x ∈ S , then

the length of the trajectory of ft(x) equals
∫ 1
0 |ḟt(x)|dt.

The L1-norm of {ft} is de�ned to be the average length of these

trajectories:

l1({ft}) =

∫
S

∫ 1

0
|ḟt(x)|dtdx .

Let f ∈ Diff0(S , area), we de�ne the L1-norm of f by

l1(f ) = inf l1({ft}),

where the in�mum is taken over all isotopies ft ∈ Diff0(S , area)
connecting the identity on S with f .
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|ḟt(x)|dtdx .

Let f ∈ Diff0(S , area), we de�ne the L1-norm of f by

l1(f ) = inf l1({ft}),

where the in�mum is taken over all isotopies ft ∈ Diff0(S , area)
connecting the identity on S with f .

Michaª Marcinkowski Quasimorphisms, Diff0(S, area) and L
p-norm.



The L1-norm of Diff0(S , area)

Let {ft} be an isotopy connecting Id with f1 = f . Let x ∈ S , then

the length of the trajectory of ft(x) equals
∫ 1
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0 |ḟt(x)|dt.

The L1-norm of {ft} is de�ned to be the average length of these

trajectories:

l1({ft}) =

∫
S

∫ 1

0
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The L1-norm of Diff0(S , area)

Shnirelman: The L1-norm on Diff0(Dn, vol), n > 2 is bounded!

Unboundedness for a closed surface of genus g > 2 is easy: for f

take a point pushing map along a closed geodesic α. Then l1(f n) is

proportional to the length of αn.

It turns out, that for simply connected surface L1-norm is as well

unbounded (this follows from the results of Elishberg-Ratiu,

Gambaudo-Lagrange (disk), Brandenbursky-Shelukhin (sphere)).

Caveat: Let S0 be a subsurface of S1. It is an open question

whether the natural inclusion Diff0(S0, area)→ Diff0(S1, area) is

undistorted.
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Braiding given by a �ow

Let {ft} be an isotopy between Id and f .

Let us �x points

z1, . . . , zn. For every tuple of points x1, ..., xn we can produce a

braid like in the picture:

Let Cn(S) be the con�guration

space of n points in S and let

Pn(S) = π1(Cn(S)) be the pure

braid group.

We get a map γ(f ) : Cn(S)→ Pn(S).
(sometimes γ(f ) : Cn(S)→ Pn(S)/Z(Pn(S)). Otherwise γ is not well de�ned.)

The image is �nite. On Pn(S) we look at the word norm.
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Quasimorphisms in a nutshell

Let us consider homomorphisms from Diff0(D, area) to the reals.

It

turns out, that they form a �nite linear space. E.g., for a closed

disc we have just one homomorphism called Calabi:

Cal : Diff0(D, area)→ R

But there is many functions on Diff0(S , area) that behave like

homomorphisms.
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Quasimorphisms in a nutshell

Let G be a group. We call q : G → R a quasimorphism if there

exists D ∈ R such that for all a, b ∈ G

|q(ab)− q(a)− q(b)| ≤ D.

If D = 0 we have a homomorphism.

Usually we look at the homogenisation limn→∞
q(an)
n .

Easy inequality for f.g. groups: |q(a)| ≤ C |a|word + C .

On �nitely generated groups there is a lot of quasimorphisms. E.g.,

let w ∈ Fn,

qw (x) = #{ w is a subword of x} −#{ w−1 is a subword of x}.
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Gambaudo-Ghys construction

Remainder: γ(f ) : Cn(S)→ Pn(S).

Let q : Pn(S)→ R be a quasimorphisms.

Thus we have q ◦ γ(f ) : Cn(S)→ R.

It induces a quasimorphism

GGq : Diff0(S , area)→ R given by

GGq(f ) =

∫
Cn(S)

q ◦ γ(f , x)dx .

E.g, if n = 2 and S = D2, then P2(D2) = Z. This construction
gives us (after homogenisation) the Calabi homomorphism.
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The lower bound

Theorem (Brandenbursky-M-Shelukhin)

Let S be a compact surface, n ∈ N. There exist constants

A,B ∈ R such that for every f ∈ Diff0(S , area)∫
Cn(S)

|γ(f , x)|Pn(S)dx < Al1(f ) + B.

It was known before for the disc and for the sphere. Our new proof

is simpler and works for all surfaces.

Corollary

- For every homogeneous GGq quasimorphism: GGq(f ) ≤ Al1(f ).
- Every right angled Artin group can be embedded

quasi-isometrically into Diff0(S , area). E.g., Zk , Fk .
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Outline of the proof

∫
Cn(S)

|γ(f , x)|Pn(S)dx < Al1(f ) + B.

We want to have a Riemannian metric g on Cn(S), such that

|γ(f , x)|Pn(S) can be compared to lg (γ(f , x)), the minimum over

lengths of loops representing γ(f , x).There is a problem: if we take

an 'obvious' metric on Cn(S) ⊂ Sn (i.e., the product Riemannian

metric), then every braid can be represented by a short loop in

Cn(S).

We need a di�erent

metric.
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Outline of the proof

Let d : Cn(S)→ R be the minimal distance between particles

d(x1, . . . , xn) = min{dS(xi , xj) : i 6= j}.

We de�ne a new Riemannian metric on Cn(S) by the formula:

gd =
gprod

d
.

If two particles collide, the metric explodes.
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Outline of the proof

Consider f ∈ Diff0(S , area) and {ft} isotopy.
It induces maps f ∗, {f ∗t } on the con�guration space.

One can show that there are braids γ such that lgb(γ) is arbitrary

large.

But still we cannot compare |γ|Pn(S) to lgd (γ).
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Outline of the proof

Cn(S) has an embedding to a high dimensional RN (D. Sinha),

such that the closure of the image An(S) is a manifold with corners

and such that Cn(S) is the interior of An(S) (so the π1 does not

change).

If we restrict the euc. metric from RN to An(S) (call it gcomp), then

by Milnor-Schwartz we have |γ(f , x)|Pn(S) ∼ lcomp(γ(f , x)) and∫
Cn(S)

|γ(f , x)|Pn(S)dx ∼
∫
Cn(S)

lcomp(γ(f , x))dx
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Outline of the proof

∫
Cn(S)

|γ(f , x)|Pn(S)dx ∼
∫
Cn(S)

lcomp(γ(f , x))dx

It turns out that gcomp ≤ A′gd , thus∫
Cn(S)

lcomp(γ(f , x))dx ≤ A′
∫
Cn(S)

lgd (γ(f , x))dx

≤ A′
∫
Cn(S)

lgd (f ∗t (x))dx + B ≤ AA′l1(f ) + B.

(we had:
∫
Cn(S) lgd (f ∗t (x))dx ≤ Al1(f ))
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