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Let S be a compact oriented surface.

Michat Marcinkowski Quasimorphisms, Diffg(S, area) and LP-norm.



Let S be a compact oriented surface.We consider the group
Diffo(S, area)

of all diffeomorphisms preserving the area and isotopic to the
identity.
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Let S be a compact oriented surface.We consider the group
Diffo(S, area)

of all diffeomorphisms preserving the area and isotopic to the
identity.

Isotopic do the identity means, that there exists a family {f;} of
diffeomorphisms in Diffo(S, area) such that fy = Id and f; = .
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Exmaples

Pseudo-rotations on a disc: in the polar coordinates
f(0,r) = (0 + «a(r),r), ais any function.
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Norms on Diffy(S, area)

On Diffo(S, area) (or its big subgroup) there are interesting norms
of different flavours:
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@ The Hofer norm (symplectic geometry)
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Norms on Diffy(S, area)

On Diffo(S, area) (or its big subgroup) there are interesting norms
of different flavours:

@ The Hofer norm (symplectic geometry)
@ The fragmentation (more combinatoric)

@ The LP-norm (dynamics, geometry)

Now if ¥ € Diffo(S, area) one can i.e., ask if |f”| grows linearly
(then we say f is undistorted).
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Norms on Diffy(S, area)

On Diffo(S, area) (or its big subgroup) there are interesting norms
of different flavours:

@ The Hofer norm (symplectic geometry)
@ The fragmentation (more combinatoric)

@ The LP-norm (dynamics, geometry)

Now if ¥ € Diffo(S, area) one can i.e., ask if |f”| grows linearly
(then we say f is undistorted).

In general we want to embed finitely generated subgroups in
Diffo(S, area) and we want to know what is the quality of this
embedding.
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The L'-norm of Diffy(S, area)

Let {f;} be an isotopy connecting Id with f; = f.
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The L'-norm of Diffy(S, area)

Let {f;} be an isotopy connecting /d with f; = f. Let x € S, then
the length of the trajectory of f(x) equals fo |%(x)|dt.

Michat Marcinkowski Quasimorphisms, Diffg(S, area) and LP-norm.



The L'-norm of Diffy(S, area)

Let {f;} be an isotopy connecting /d with f; = f. Let x € S, then

the length of the trajectory of f(x) equals fo |%(x)|dt.
The L[1-norm of {£;} is defined to be the average length of these

trajectories:
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The L'-norm of Diffy(S, area)

Let {f;} be an isotopy connecting /d with f; = f. Let x € S, then

the length of the trajectory of f(x) equals fo |%(x)|dt.
The L[1-norm of {£;} is defined to be the average length of these

trajectories:
AR = [ / () de.

Let f € Diffo(S, area), we define the L1-norm of f by

Michat Marcinkowski Quasimorphisms, Diffg(S, area) and LP-norm.




The L'-norm of Diffy(S, area)

Let {f;} be an isotopy connecting /d with f; = f. Let x € S, then

the length of the trajectory of f(x) equals fo |%(x)|dt.
The L[1-norm of {£;} is defined to be the average length of these

trajectories:
AR = [ / () de.

Let f € Diffo(S, area), we define the L1-norm of f by

h(f) =inf h({f:}),

where the infimum is taken over all isotopies 7; € Diff(S, area)
connecting the identity on S with f.
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The L'-norm of Diffy(S, area)

Shnirelman: The L!-norm on Diffo(D", vol), n > 2 is bounded!
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The L'-norm of Diffy(S, area)

Shnirelman: The L!-norm on Diffo(D", vol), n > 2 is bounded!

Unboundedness for a closed surface of genus g > 2 is easy: for f
take a point pushing map along a closed geodesic a. Then (") is
proportional to the length of a”.
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The L'-norm of Diffy(S, area)

Shnirelman: The L!-norm on Diffo(D", vol), n > 2 is bounded!

Unboundedness for a closed surface of genus g > 2 is easy: for f
take a point pushing map along a closed geodesic a. Then (") is
proportional to the length of a”.

It turns out, that for simply connected surface L'-norm is as well
unbounded (this follows from the results of Elishberg-Ratiu,
Gambaudo-Lagrange (disk), Brandenbursky-Shelukhin (sphere)).
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The L'-norm of Diffy(S, area)

Shnirelman: The L!-norm on Diffo(D", vol), n > 2 is bounded!

Unboundedness for a closed surface of genus g > 2 is easy: for f
take a point pushing map along a closed geodesic a. Then (") is
proportional to the length of a”.

It turns out, that for simply connected surface L'-norm is as well
unbounded (this follows from the results of Elishberg-Ratiu,
Gambaudo-Lagrange (disk), Brandenbursky-Shelukhin (sphere)).

Caveat: Let Sp be a subsurface of S;. It is an open question
whether the natural inclusion Diffg(Sp, area) — Diffo(S51, area) is
undistorted.
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Braiding given by a flow

Let {f;} be an isotopy between /d and f.
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Braiding given by a flow

Let {f;} be an isotopy between /d and f. Let us fix points
Z1y. ..y 2Zp.
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Braiding given by a flow

Let {f;} be an isotopy between /d and f. Let us fix points
Z1,...,2n. For every tuple of points xq, ..., x, we can produce a
braid like in the picture:
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Braiding given by a flow

Let {f;} be an isotopy between /d and f. Let us fix points
Z1,...,2n. For every tuple of points xq, ..., x, we can produce a
braid like in the picture:

_ S

~ \X(Q:* \\ .

Q. ) Let C,(S) be the configuration
space of n pointsin S and let
Pn(S) = m1(Cn(S)) be the pure
4 braid group.
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Braiding given by a flow

Let {f;} be an isotopy between /d and f. Let us fix points
Z1,...,2n. For every tuple of points xq, ..., x, we can produce a
braid like in the picture:

- S
~ \X(Q:* \\ .
\\,\> Let C,(S) be the configuration
) )\ space of n points in S and let
: Pn(S) = m1(Cn(S)) be the pure
4 braid group.

We get a map y(f): Co(S) — Pn(S).
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Braiding given by a flow

Let {f;} be an isotopy between /d and f. Let us fix points
Z1,...,2n. For every tuple of points xq, ..., x, we can produce a
braid like in the picture:

Let C,(S) be the configuration
space of n points in S and let
Pn(S) = m1(Cn(S)) be the pure
braid group.

We get a map y(f): Co(S) — Pn(S).
(sometimes v(f): Ca(S) — Pn(S)/Z(Pn(S)). Otherwise v is not well defined.)
The image is finite. On P,(S) we look at the word norm.
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Quasimorphisms in a nutshell

Let us consider homomorphisms from Diffg(D, area) to the reals.
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Quasimorphisms in a nutshell

Let us consider homomorphisms from Diffo(D, area) to the reals. It
turns out, that they form a finite linear space.
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Quasimorphisms in a nutshell

Let us consider homomorphisms from Diffo(D, area) to the reals. It
turns out, that they form a finite linear space. E.g., for a closed
disc we have just one homomorphism called Calabi:

Cal: Diffo(D,area) — R
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Quasimorphisms in a nutshell

Let us consider homomorphisms from Diffo(D, area) to the reals. It
turns out, that they form a finite linear space. E.g., for a closed
disc we have just one homomorphism called Calabi:

Cal: Diffo(D,area) — R

But there is many functions on Diffy(S, area) that behave like
homomorphisms.
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Quasimorphisms in a nutshell

Let G be a group. We call g: G — R a quasimorphism if there
exists D € R such that for all a,b € G

lg(ab) — q(a) — q(b)| < D.
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Quasimorphisms in a nutshell

Let G be a group. We call g: G — R a quasimorphism if there
exists D € R such that for all a,b € G

lg(ab) — q(a) — q(b)| < D.

If D =0 we have a homomorphism.
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Quasimorphisms in a nutshell

Let G be a group. We call g: G — R a quasimorphism if there
exists D € R such that for all a,b € G

lg(ab) — q(a) — q(b)| < D.

If D =0 we have a homomorphism.

Usually we look at the homogenisation lim,_,.o q(@")

n
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Quasimorphisms in a nutshell

Let G be a group. We call g: G — R a quasimorphism if there
exists D € R such that for all a,b € G

lg(ab) — q(a) — q(b)| < D.

If D =0 we have a homomorphism.

Usually we look at the homogenisation lim,_,.o @.

Easy inequality for f.g. groups: |g(a)| < Cla|yord + C.
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Quasimorphisms in a nutshell

Let G be a group. We call g: G — R a quasimorphism if there
exists D € R such that for all a,b € G

lg(ab) — q(a) — q(b)| < D.

If D =0 we have a homomorphism.
Usually we look at the homogenisation lim,_,.o @
Easy inequality for f.g. groups: |g(a)| < Cla|word + C.

On finitely generated groups there is a lot of quasimorphisms. E.g.,
let w € Fp,

gw(x) = #{ w is a subword of x} — #{ w™! is a subword of x}.
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Gambaudo-Ghys construction

Remainder: (f): Co(S) — Pn(S).

Let g: Pp(S) — R be a quasimorphisms.
Thus we have g ovy(f): Gy(S) — R.

It induces a quasimorphism
GGq: Diffo(S,area) — R given by
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Gambaudo-Ghys construction

Remainder: (f): Co(S) — Pn(S).

Let g: Pp(S) — R be a quasimorphisms.
Thus we have g ovy(f): Gy(S) — R.

It induces a quasimorphism
GGq: Diffo(S,area) — R given by

GGq(f):/C(S)qo*y(f,x)dx.
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Gambaudo-Ghys construction

Remainder: (f): Co(S) — Pn(S).

Let g: Pp(S) — R be a quasimorphisms.
Thus we have g ovy(f): Gy(S) — R.

It induces a quasimorphism
GGq: Diffo(S,area) — R given by

GGq(f):/C(S)qo*y(f,x)dx.

E.g, if n=2and S = D?, then P,(D?) = Z. This construction
gives us (after homogenisation) the Calabi homomorphism.
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The lower bound

Theorem (Brandenbursky-M-Shelukhin)

Let S be a compact surface, n € N. There exist constants
A, B € R such that for every f € Diffy(S, area)

/ (F, x)\ps)dx < Ab(F) + B.
Cn(S)

It was known before for the disc and for the sphere. Our new proof
is simpler and works for all surfaces.
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The lower bound

Theorem (Brandenbursky-M-Shelukhin)

Let S be a compact surface, n € N. There exist constants
A, B € R such that for every f € Diffy(S, area)

/ (F, x)\ps)dx < Ab(F) + B.
Cn(S)

It was known before for the disc and for the sphere. Our new proof
is simpler and works for all surfaces.

- For every homogeneous GGg quasimorphism: GGq(f) < Ah(f).
- Every right angled Artin group can be embedded
quasi-isometrically into Diffo(S, area). E.g., ZK, Fy.
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Qutline of the proof

/ (F. )l puisyd < AR(F) + B.
Cn(S)
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Qutline of the proof

/ (F. )l puisyd < AR(F) + B.
Cn(S)

We want to have a Riemannian metric g on C,(S), such that
[7(f, x)|p,(s) can be compared to [g(v(f, x)), the minimum over
lengths of loops representing ~(f, x).
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Qutline of the proof

/ (F. )l puisyd < AR(F) + B.
Cn(S)

We want to have a Riemannian metric g on C,(S), such that
[7(f, x)|p,(s) can be compared to [g(v(f, x)), the minimum over
lengths of loops representing ~(f, x).There is a problem: if we take
an 'obvious’ metric on C,(S) C S” (i.e., the product Riemannian

metric), then every braid can be represented by a short loop in
Cn(S).
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Qutline of the proof

/ (F. )l puisyd < AR(F) + B.
Cn(S)

We want to have a Riemannian metric g on C,(S), such that
[7(f, x)|p,(s) can be compared to [g(v(f, x)), the minimum over
lengths of loops representing ~(f, x).There is a problem: if we take
an 'obvious’ metric on C,(S) C S” (i.e., the product Riemannian

metric), then every braid can be represented by a short loop in
Cn(S).

‘}) We need a different

Y
@ metric.
2
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Qutline of the proof

Let d: C,(S) — R be the minimal distance between particles

d(x1,...,Xn) = min{ds(x;,x;): i # j}.
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Qutline of the proof

Let d: C,(S) — R be the minimal distance between particles
d(x1,...,Xn) = min{ds(x;,x;): i # j}.

We define a new Riemannian metric on C,(S) by the formula:

8prod
d

Michat Marcinkowski Quasimorphisms, Diffg(S, area) and LP-norm.



Qutline of the proof

Let d: C,(S) — R be the minimal distance between particles
d(x1,...,Xn) = min{ds(x;,x;): i # j}.

We define a new Riemannian metric on C,(S) by the formula:

8prod
d

If two particles collide, the metric explodes.
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d

If two particles collide, the metric explodes.

Michat Marcinkowski Quasimorphisms, Diffg(S, area) and LP-norm.



Qutline of the proof

Consider f € Diffy(S, area) and {f;} isotopy.
It induces maps 7, {f} on the configuration space.
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Qutline of the proof

Consider f € Diffy(S, area) and {f;} isotopy.
It induces maps 7, {f} on the configuration space.

We can consider the /i-norm of £*: C,(S) — Co(S) with respect to
&d-

R
Cn(S)
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Qutline of the proof

Consider f € Diffy(S, area) and {f;} isotopy.
It induces maps 7, {f} on the configuration space.

We can consider the /i-norm of £*: C,(S) — Co(S) with respect to
&d4- And we have the following lemma:

| e ()de < Ah(h).
Cn(S)
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Qutline of the proof

Consider f € Diffy(S, area) and {f;} isotopy.
It induces maps 7, {f} on the configuration space.

We can consider the /i-norm of £*: C,(S) — Co(S) with respect to
&d4- And we have the following lemma:

| e ()de < Ah(h).
Cn(S)

One can show that there are braids « such that /g, () is arbitrary
large.
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Qutline of the proof

Consider f € Diffy(S, area) and {f;} isotopy.
It induces maps 7, {f} on the configuration space.

We can consider the /i-norm of £*: C,(S) — Co(S) with respect to
&d4- And we have the following lemma:

| e ()de < Ah(h).
Cn(S)

One can show that there are braids « such that /g, () is arbitrary
large.

But still we cannot compare |v|p,(s) to lg,(7)-
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Qutline of the proof

Ca(S) has an embedding to a high dimensional RV (D. Sinha),
such that the closure of the image A,(S) is a manifold with corners
and such that C,(S) is the interior of A,(S) (so the m; does not

change).
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Qutline of the proof

Ca(S) has an embedding to a high dimensional RV (D. Sinha),
such that the closure of the image A,(S) is a manifold with corners
and such that C,(S) is the interior of A,(S) (so the m; does not
change).

If we restrict the euc. metric from RN to A,(S) (call it 8comp), then
by Milnor-Schwartz we have |y(f, x)|p,(s) ~ lomp(7(f, x)) and

/ I (F ) sy ~ / leomp (7 (£, %)) dx
Ca(S) Ca(S)

n
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Qutline of the proof

/ I (F13) sy ~ / leomp(1(F x))dx
Cn(S) Cn(S)
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Qutline of the proof

/ I (F13) sy ~ / leomp(1(F x))dx
Cn(S) Cn(S)

It turns out that geomp < A’gy, thus

/ /comp(’y(fyx))dx < A// /gd(r}/(fax))dx
Cn(S) n($)
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Qutline of the proof

/ I (F13) sy ~ / leomp(1(F x))dx
Cn(S) Cn(S)

n

It turns out that geomp < A’gy, thus

/ leomp((F,x))dx < A / Je (4(F, x))dx

< A’/ le, (F7(x))dx + B < AAK(f) + B.
Ca(S)

(we hads ¢, (s) g (7 (x))x < AR(F))
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Ca(S)

(we hads ¢, (s) g (7 (x))x < AR(F))

Michat Marcinkowski Quasimorphisms, Diffg(S, area) and LP-norm.



