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Introduction: LP-norm

Let S be a surface with a Riemannian metric.

Diffo(S, area) is the group of area preserving diffeo’s of S isotopic
to Ids.

Let p =1, and let f; € Diffy(S, area) an isotopy between fy and f;.

h({f:}) // | (x \dtdx_/ /m )| dxdt.

Thus h({f;}) is the average of the lengths of all paths f;(x).
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Introduction: LP-norm

Let f € Diffo(S, area), we define the L'-norm of f by
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Introduction: LP-norm

Let f € Diffo(S, area), we define the L'-norm of f by

h(f) = inf h({#}),

where the infimum is taken over all isotopies 7; € Diff(S, area)
connecting the identity on S with f.
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Let f € Diffo(S, area), we define the L'-norm of f by

h(f) = inf h({#}),

where the infimum is taken over all isotopies 7; € Diff(S, area)
connecting the identity on S with f.

The L!-diameter of Diffo(S, area) equals

sup{h(f) : f € Diffo(S,area)}.

b({f) = /(/m )P d)»

In general:
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Introduction: LP-norm

Let f € Diffo(S, area), we define the L'-norm of f by

h(f) = inf h({#}),

where the infimum is taken over all isotopies 7; € Diff(S, area)
connecting the identity on S with f.

The L!-diameter of Diffo(S, area) equals

sup{h(f) : f € Diffo(S,area)}.

b({f) = /(/m )P d)»

Hélder inequality: I,(f) > C * h(f).

In general:
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e A. Shnirelman: M is the n-dimensional disc, n > 2. LP-diameter
of Diffo(M, vol) is finite.
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e A. Shnirelman: M is the n-dimensional disc, n > 2. LP-diameter
of Diffo(M, vol) is finite.

e Eliashberg and Ratiu: LP-diameter (p > 1) of Diffo(S, area) is
infinite if S is a surface with boundary. They show that the Calabi
homomorphism is Lipschitz with respect to the LP-norm.
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e Gambaudo and Lagrange: similar result for a huge class of
quasimorphisms on Diffo(S, area) if S is the closed disc. Their proof
makes use of the braid group of the disc and inequalities relating
the geometric intersection number of a braid and its word-length.
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e Gambaudo and Lagrange: similar result for a huge class of
quasimorphisms on Diffo(S, area) if S is the closed disc. Their proof
makes use of the braid group of the disc and inequalities relating
the geometric intersection number of a braid and its word-length.

e The last unsolved case was the sphere. Recently Brandenbursky
and Shelukhin showed that in this case the diameter is as well
infinite. They show as well that e.g. right angled Artin groups
embed quiasi-isometrically (as well Kim-Koberda, Crisp-Wiest).
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Theorem 1 (Short proof, M.).

LP-diameter, p > 1, of Diffo(S, area) is infinite.
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Theorem 1 (Short proof, M.).

LP-diameter, p > 1, of Diffo(S, area) is infinite.

We can show more:

Theorem 2 (Brandenbursky-M.-Shelukhin).

Every f.g. right angled Artin group and R¥, for every k, embed
quasi-isometrically in Diffo(S, area) with LP-metric, p > 1.

Michat Marcinkowski A simple proof that the LP-diameter of Diffg (S, area) is infi



Theorem 1 (Short proof, M.).

LP-diameter, p > 1, of Diffo(S, area) is infinite.

We can show more:

Theorem 2 (Brandenbursky-M.-Shelukhin).

Every f.g. right angled Artin group and R¥, for every k, embed
quasi-isometrically in Diffo(S, area) with LP-metric, p > 1.

Theorem 2 is new for hyperbolic surfaces. For disc, sphere and
torus it was shown by Kim-Koberda and Brandenbursky-Shelukhin.
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Warm-up: hyperbolic surface

Proposition 1.

The LP-diameter, p > 1, of Diffy(S, area) is infinite for S a
hyperbolic surface.
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Warm-up: hyperbolic surface

Proposition 1.

The LP-diameter, p > 1, of Diffy(S, area) is infinite for S a
hyperbolic surface.

Proof: Let U C S be a small ball.

Let v be a nontrivial loop based at x € U.
Assume it is the shortest based loop in its homotopy
class.

Imagine an isotopy f;, t € [0,1], that takes the set U
and moves it along ~, such that at time 1 the set U
comes back to the initial place.
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Warm-up: hyperbolc surface

Reminder:
U C S a small ball, v a geodesic based at x, f is the identity on U.
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Warm-up: hyperbolc surface

Reminder:
U C S a small ball, v a geodesic based at x, f is the identity on U.

For any z € U, fi(z) is a loop of length at least

56\ [ L = length(y) — 2diam(U).
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Warm-up: hyperbolc surface

Reminder:
U C S a small ball, v a geodesic based at x, f is the identity on U.

For any z € U, fi(z) is a loop of length at least
L = length(~y) — 2diam(U).

Moreover, any loop (based at z) homotopic to (z)
has length at least L.

Let g: be an isotopy connecting Id to f;.

Lemma: Let hy be a loop in Diffy(X) based at ldx (ho = h1 = Idx).
For every x € X, the loop h¢(x) is in the center of 71 (X, x).
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Reminder:
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For any z € U, fi(z) is a loop of length at least
L = length(~y) — 2diam(U).
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has length at least L.

Let g: be an isotopy connecting Id to f;.

Lemma: Let hy be a loop in Diffy(X) based at ldx (ho = h1 = Idx).
For every x € X, the loop h¢(x) is in the center of 71 (X, x).

For every z € U, the trajectories g:(z) and f;(z) are homotopic,
thus g¢(z) has length at least L.
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Warm-up: hyperbolc surface

Reminder:
U C S a small ball, v a geodesic based at x, f is the identity on U.

For any z € U, fi(z) is a loop of length at least
L = length(~y) — 2diam(U).

Moreover, any loop (based at z) homotopic to #(z)
has length at least L.

Let g: be an isotopy connecting Id to f;.

Lemma: Let hy be a loop in Diffy(X) based at ldx (ho = h1 = Idx).
For every x € X, the loop h¢(x) is in the center of 71 (X, x).

For every z € U, the trajectories g:(z) and f;(z) are homotopic,
thus g¢(z) has length at least L.
Hence h({g:}) > area(U)L and h(f) > area(VU)L.
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A metric on C,(S)

We want to do a similar thing when S is a disc, annulus, sphere or
a torus.
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A metric on C,(S)

We want to do a similar thing when S is a disc, annulus, sphere or
a torus.

Let C,(S) be the set of tuples of n pairwise distinct points in S.

On Ch(S) we have a product metric restricted from S” and
m1(Ca(S)) = Pn(S), the pure braid gorup.
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We want to do a similar thing when S is a disc, annulus, sphere or
a torus.

Let C,(S) be the set of tuples of n pairwise distinct points in S.

On Ch(S) we have a product metric restricted from S” and
m1(Ca(S)) = Pn(S), the pure braid gorup.

An diffeomorphism f of S induces a diffeomorphism on C,(S). One
can try to use the same idea as for hyperbolic spaces.
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A metric on C,(S)

We want to do a similar thing when S is a disc, annulus, sphere or
a torus.

Let C,(S) be the set of tuples of n pairwise distinct points in S.

On Ch(S) we have a product metric restricted from S” and
m1(Ca(S)) = Pn(S), the pure braid gorup.

An diffeomorphism f of S induces a diffeomorphism on C,(S). One
can try to use the same idea as for hyperbolic spaces.

Problem: There exists C, such that every element of P,(S) can be
realized as a loop of length < C.
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A metric on C,(S)

We introduce a new metric.
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A metric on C,(S)

We introduce a new metric.

Co(§)=S5"— UDU where Djj = {x € §": x; = x;}.
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A metric on C,(S)

We introduce a new metric.

Co(§)=S5"— UDU where Djj = {x € §": x; = x;}.
i

Let x € Co(S), D =;; Djj and define

1
d(x) = dc,(s)(x, D) = Emin{ds(x,-,xj-): 1<i<j<n}
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A metric on C,(S)

We introduce a new metric.

Co(§)=S5"— UDU where Djj = {x € §": x; = x;}.
i

Let x € Co(S), D =;; Djj and define

d(x) = dc,(s)(x, D) = 7

min{ds(x;,x): 1 <i<j<n}

Let v € Tx(Cn(S)) is a vector tangent
to a point x € G,(S).
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A metric on C,(S)

We introduce a new metric.

Co(§)=S5"— UDU where Djj = {x € §": x; = x;}.
i

Let x € Co(S), D =;; Djj and define

d(x) = dc,(s)(x, D) =

V2

min{ds(x;,x): 1 <i<j<n}

Let v € Tx(Cn(S)) is a vector tangent
to a point x € G5(S). We define gp, a
new metric on C,(S):
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A metric on C,(S)

We introduce a new metric.

Co(§)=S5"— UDU where Djj = {x € §": x; = x;}.
i

Let x € Co(S), D =;; Djj and define

d(x) = dc,(s)(x, D) = 7

min{ds(x;,x): 1 <i<j<n}

Let v € Tx(Cn(S)) is a vector tangent
to a point x € G5(S). We define gp, a
new metric on C,(S):

’V|gb = d(X)

Ca(S) is a C°-Riemannian mfld.
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The metric induced on C,(S) by gp is complete.
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The metric induced on C,(S) by gp is complete.

Let z € C,(S) be a base point.
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The metric induced on C,(S) by gp is complete.

Let z € C,(S) be a base point. For v € m1(C,(S), z) by /(%)
denote the length (in gp) of the shortest loop based at z

representing 7.
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The metric induced on C,(S) by gp is complete.

Let z € C,(S) be a base point. For v € m1(C,(S), z) by /(%)
denote the length (in gp) of the shortest loop based at z
representing 7.

I(7y) can be arbitrary big.
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A metric on C,(S)

I(y) can be arbitrary big.
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A metric on C,(S)

I(y) can be arbitrary big.

Proof:
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A metric on C,(S)

I(y) can be arbitrary big.

Proof:

Let Y — (Ca(S), gp) be the universal cover with the pulled-back
CP-Riemannian metric.
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A metric on C,(S)

I(y) can be arbitrary big.

Proof:

Let Y — (Ca(S), gp) be the universal cover with the pulled-back
CP-Riemannian metric.
— By

\

Hw) N Since C,(S) is complete, so is Y.

~ 2

0% C«(SB
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A metric on C,(S)

I(y) can be arbitrary big.

Proof:

Let Y — (Ca(S), gp) be the universal cover with the pulled-back
CP-Riemannian metric.

— B9
Hw) N Since Cn(S) is complete, so is Y.
2| Let zZ/ € Y be in the pre-image of z € C,(S).
./
Y
z C»\(SB
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A metric on C,(S)

I(y) can be arbitrary big.

Proof:

Let Y — (Ca(S), gp) be the universal cover with the pulled-back
CP-Riemannian metric.

— By
Hw) N Since Cn(S) is complete, so is Y.
2| Let z/ € Y be in the pre-image of z € C,(S).
/ For every C, the closed ball By (Z/, C) is
Y compact.
z C»\(SB
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A metric on C,(S)

I(y) can be arbitrary big.

Proof:

Let Y — (Ca(S), gp) be the universal cover with the pulled-back
CP-Riemannian metric.

— B9
Hw) N Since Cn(S) is complete, so is Y.
= Let z/ € Y be in the pre-image of z € C,(S).
/ For every C, the closed ball By (Z/, C) is
Y compact.
Thus there is only finitely v € m1(Cy(S), 2)
/ /
. QB such that v(Z’) € By(Z/, C).
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Inequality

Recall: h({f;}) = fo f5|ft x)|dxdt
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Inequality
Recall: h({f;}) = fo f5|ft x)|dxdt

On Diffo(Cn(S),area™) we define an L1 metric using gp:
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Recall: h({f;}) = fo f5|ft x)|dxdt

On Diffo(Cn(S),area™) we define an L1 metric using gp:
i.e.: for ¢ an isotopy in Cph(S):
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Recall: h({f;}) = fo f5|ft x)|dxdt

On Diffo(Cn(S),area™) we define an L1 metric using gp:
i.e.: for ¢ an isotopy in Cph(S):

WA //\ft ) g, ot
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Inequality
Recall: h({f;}) = fo f5|ft x)|dxdt

On Diffo(Cn(S),area™) we define an L1 metric using gp:
i.e.: for ¢ an isotopy in Cph(S):

WA //\ft ) g, ot

We have an embedding (a product map):
Diffo(S, area) < Diffo(Cp(S), area”)

Michat Marcinkowski A simple proof that the LP-diameter of Diffg (S, area) is infi



Inequality

Recall: h({f;}) = fo f5|ft x)|dxdt

On Diffo(Cn(S),area™) we define an L1 metric using gp:

i.e.: for ¢ an isotopy in Cph(S):

WA //\ft ) g, ot

We have an embedding (a product map):
Diffo(S, area) < Diffo(Cp(S), area”)

Diffo(S, area) < Diffo(Cy(S), area”) is Lipschitz, i.e:
=11 < CIf]].
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Inequality

Recall: h({f;}) = fo f5|ft x)|dxdt

On Diffo(Cn(S),area™) we define an L1 metric using gp:

i.e.: for ¢ an isotopy in Cph(S):

WA //\ft ) g, ot

We have an embedding (a product map):
Diffo(S, area) < Diffo(Cp(S), area”)

Diffo(S, area) < Diffo(Cy(S), area”) is Lipschitz, i.e:
=11 < CIf]].

Proof: certain integral of ﬁ is finite.

Michat Marcinkowski A simple proof that the LP-diameter of Diffg (S, area) is infi



Proof of Theorem 1

Let S be a compact surface. The LP-diameter, p > 1, of
Diffo(S, area) is infinite.
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Proof of Theorem 1

Let S be a compact surface. The LP-diameter, p > 1, of
Diffo(S, area) is infinite.

Proof:
Let z = (z1,...,2n) € C4(S) be a base-point.

Michat Marcinkowski A simple proof that the LP-diameter of Diffg (S, area) is infi



Proof of Theorem 1

Let S be a compact surface. The LP-diameter, p > 1, of
Diffo(S, area) is infinite.

Proof:
Let z = (z1,...,2n) € C4(S) be a base-point.
O\
G/\ U= U x...x U, C Cy(S) where Uj is a
) small ball around z;.
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Proof of Theorem 1

Let S be a compact surface. The LP-diameter, p > 1, of
Diffo(S, area) is infinite.

Proof:
Let z = (z1,...,2n) € C4(S) be a base-point.
.\\‘
G/\ U= U x...x U, C Cy(S) where Uj is a
B \ small ball around z;.

Suppose [7] € m1(Cn(S), 2).
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Let S be a compact surface. The LP-diameter, p > 1, of
Diffo(S, area) is infinite.

Proof:
Let z = (z1,...,2n) € C4(S) be a base-point.
.\\‘
G/\ U= U x...x U, C Cy(S) where Uj is a
B \ small ball around z;.

Suppose [7] € m1(Cn(S), 2).

Let f; be an isotopy of S such that £*(z)
traces vy and £ fixes U.
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Diffo(S, area) is infinite.

Proof:
Let z = (z1,...,2n) € C4(S) be a base-point.
.\\‘
G/\ U= U x...x U, C Cy(S) where Uj is a
B \ small ball around z;.

Suppose [7] € m1(Cn(S), 2).

Let f; be an isotopy of S such that £*(z)
traces vy and £ fixes U.

Michat Marcinkowski A simple proof that the LP-diameter of Diffg (S, area) is infi
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Chose an arbitrary isotopy {g:} connecting Id¢,(s) to f".
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Proof of Theorem 1

Chose an arbitrary isotopy {g:} connecting Id¢,(s) to f".
Let x € U C Co(S).

The length of g:(x) (in gp) equals fo 18t (x)|g, dt.
And is at least D, = I(y) — 2diam(U).

1
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Let x € U C Co(S).

The length of g:(x) (in gp) equals fo 18t (x)|g, dt.
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Chose an arbitrary isotopy {g:} connecting Id¢,(s) to f".
Let x € U C Co(S).

The length of g:(x) (in gp) equals fo 18t (x)|g, dt.
And is at least D, = I(y) — 2diam(U).

1
area(U)D, < / / 160(x) 5, dtdlx
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Chose an arbitrary isotopy {g:} connecting Id¢,(s) to f".
Let x € U C Co(S).

The length of g:(x) (in gp) equals fo 18t (x)|g, dt.
And is at least D, = I(y) — 2diam(U).

1
area(U)D, < / / 160(x) 5, dtdlx
UuJo

1
< [ [ g dax
snJo
1

- / 180(x) g, it
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Proof of Theorem 1

Chose an arbitrary isotopy {g:} connecting Id¢,(s) to f".
Let x € U C Co(S).

The length of g:(x) (in gp) equals fo 18t (x)|g, dt.
And is at least D, = I(y) — 2diam(U).

1
area(U)D,, < / / 160(x) 5, dtdx
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1
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Proof of Theorem 1

Chose an arbitrary isotopy {g:} connecting Id¢,(s) to f".
Let x € U C Co(S).

The length of g:(x) (in gp) equals fo 18t (x)|g, dt.
And is at least D, = I(y) — 2diam(U).

1
area(U)D,, < / / 160(x) 5, dtdx
UuJo

1
< [ [ g deax
snJo
1

- / 18:0) g, dxdt
0 sn
~ h({g}).

{gt} was arbitrary, so area(U)D, < h(f").

Michat Marcinkowski A simple proof that the LP-diameter of Diffg (S, area) is infi



Compactification of C,(S)

Ca(S) = G(S)U{(x,x,v) : x€S,ve TS}
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Compactification of C,(S)

Ca(S) = G(S)U{(x,x,v) : x€S,ve TS}

In general, there is a compactification C,(S) C C,(S) such that

the inclusion is a homotopy equivalence. Moreover, C,(S) is a
manifold with corners (D. Sinha).
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Let g be any Riemannian metric on C,(S). Then

There exists C, such that g < Cgp
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Let g be any Riemannian metric on C,(S). Then

There exists C, such that g < Cgp \

Definition of y(f, x):

Let z = (z1,...,2n) € Ca(S), fr an iso
K(\ between /ds and f € Diffy(S, area).
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Let g be any Riemannian metric on C,(S). Then

There exists C, such that g < Cgp

Definition of y(f, x):

T~ S Let z = (z1,...,2n) € Ca(S), f; an iso
K(Qﬁ\ between /ds and f € Diffy(S, area).
\ For every x € C,(S), fe(x) is a path

\ ; between x and f(x).
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Let g be any Riemannian metric on C,(S). Then

There exists C, such that g < Cgp

Definition of y(f, x):

T~ S Let z = (z1,...,2n) € Ca(S), f; an iso
K@%\ between /ds and f € Diffy(S, area).
For every x € C,(S), fe(x) is a path
\ ; between x and f(x).
| Connect points in x with z and f(x)
,/ with z. We get an element

“i / V(F,x) € Py(S).

Michat Marcinkowski A simple proof that the LP-diameter of Diffg (S, area) is infi



Compactification of C,(S)

[ b0l dx < CIff + .
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Compactification of C,(S)

Y(F,x)|p,dx < CIfly + D.
Ssn

1.
(Fox)lp, <A / ()|t + B
0

— Co(s)

\

L

£
= X(‘(/X)
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Compactification of C,(S)

Y(F,x)|p,dx < CIfly + D.
Ssn

1 .
Fx)leydx < A [ [ 17(0)lgdede + B < CIfls + D,
Sn snJo

— Co(s)

\

L

£
= X(‘(/X)
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Proof of Theorem 2

/ (F, )| dx < Clfls + D.

Michat Marcinkowski A simple proof that the LP-diameter of Diffg (S, area) is infi



Proof of Theorem 2

/ IV (F, x|y dx < CIfly + D.

4

f.g. right angled Artin groups embed quasi-isometrically into
Diffo(S, area) with the LP-metric.

\
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Proof of Theorem 2

/ IV (F, x|y dx < CIfly + D.
Sn

4

f.g. right angled Artin groups embed quasi-isometrically into
Diffo(S, area) with the LP-metric.

v

Let G < Diffo(S, area) the group
of diffeos that fix nbhds of z;.

LT V’ H(f) = trace of f(2).
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/ IV (F, x|y dx < CIfly + D.
Sn

4

f.g. right angled Artin groups embed quasi-isometrically into
Diffo(S, area) with the LP-metric.

v

Let G < Diffo(S, area) the group
of diffeos that fix nbhds of z;.

LT q.i. H(f) = trace of f;(z).
H is Lipschitz.
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Proof of Theorem 2

/ IV (F, x|y dx < CIfly + D.
Sn

4

f.g. right angled Artin groups embed quasi-isometrically into
Diffo(S, area) with the LP-metric.

v

Let G < Diffo(S, area) the group
of diffeos that fix nbhds of z;.

LT q.i. H(f) = trace of f;(z).
H is Lipschitz.

Let Ar be a RAAG
(Kim-Koberda: '€ is a tree)
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