Exercises - Combinatorial Group Theory
List 2.
Ping-pong Lemma, Banach—Tarski paradox, and Magnus representation.

Applications of ping-pong lemma
1. State and prove a version of ping-pong lemma for three elements of a group.
2. Show that, if parameter d is large enough, the following two maps of R?, y a,b €
GL(2,R), genrate a free group: a = (g ?
through the angle 7/4 around the origin of the coordinate system. Hint: Use the
geometric form of the maps a and b and argue geometrically
3. (Schottky groups) A group G acts by bijections on a set X, and Y7,Y5, Y3, Y, are
some pairwise disjoint subsets of X. Suppose that a,b are such elements of G that:

(1) a maps the complement of Y7 into Ys,

(2) b maps the complement of Y3 into Y.

Show that the subgroup of G generated by {a, b} is free with respect to this set. Hint:

show first that a~! maps the complement of Y, into Y;, and then apply appropriately

the ping-pong lemma.
4. (Axial automorphisms of trees) An automorphism ~ of a tree T is azial if there is

a bi-infinite polygonal path A C T (called the azis of ) preserved by 7 and such that

v acts on A “translating” it by certain non-zero amount of segments (this number of

segments is then called the translation number of v, and we denote it d(v)).

(a) Show that any two axial automorphisms of a tree T' having disjoint axes generate
a free group.

(b) Let 7, d be axial automorphisms of a tree T, and suppose that the intersection of
their axes is a bounded polygonal path consisting of [ edges of T'. Prove that if the
translation numbers of v and § are greater than [ then these elements generate a
free subgroup of the automorphism group of 7.

), b = tat™!, where t is the rotation

Approaching Banach—Tarski paradox

5. (Embedding of F;, into SO(3)) Let 6 = arccos(1/3). Prove that the rotations A

and B through the angle 6 around the axes Oz i Oz, respectively, generate a free
subgroup of rank 2 in the group SO(3).
Hints: (1) every nontrivial element of the free group Fy, ), up to conjugation, is
re[presented by a reduced word terminating with the letter a. (2) By induction with
respect to the word length show that, if we express the rotations A, B in terms of ap-
propriate 3x 3 matrices, then for any reduced word over the alphabet {4, B, A=, B~!}
terminating with A and having the length n, the corresponding matrix from SO(3)
has the first column of form ?% - (a,bv/2,¢)T, where a, b, c are some integers, and b is
not divisible by 3 (in particular, b # 0).

6. (Paradoxical decomposition of a free group) Find a decomposition of the pree
group f rank 2 into four subsets, Fy, = AUBUCU D, such that some left translations of
A and B (and similarly some left translations of C' and D) also give a decomposition
of F5. More precisely, there are elments g, h € F5 such that the following two disjoint
unions are decompositions of Fy: Fy, = AllgB = C UhD.
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Few preparations not related to free groups.
Sets X, Y are piecewise congruent if we can decompose them into finitely many pieces,
X=XiU...UX,oraz Y =Y; LU...UY,, such that for each 7 the pieces X; and Y;
are congruent.

Exercise A. Piecewise congruence is an equivalence relation.

Exercise B. The circle S' on the plane is piecewise congruent to the circle S\ {p}
with one point removed.

Exercise C. [can be resolved using Exercise 2] The sphere S? in the 3-space is piecewise
congruent with the complement S2 \ C of its any countable subset C.

7. (Paradoxical decomposition of the sphere S?) Show that the sphere S? and the
disjoint union $? LU S? of its two copies are piecewise congruent.
Hints: (1) Let C be the set of intersections of the sphere S? (viewed as srtandardly
embedded in R3) with axes of all rotations corresponding to nontrivial elements of the
group F4 g}, under its embedding into SO(3) as in Exercise 5; then Fy4 gy acts on
the complement S? \ C freely, i.e. all orbits of this action are in 1-1 correspondence
with the group. (2) Paradoxical decomposition of the group F; as in Exercise 6 induces
then piecewise congruence of S? \ C' with the disjoint union of two copies of S?\ C.

Magnus representation and its consequences

Let Qg be the ring of formal power series with respect to noncommuting variables
& 1 s € S, with integer coefficients, and let Ug be the multiplicative group of units (i.e.
invertible elements) in this ring. Copnsider the map ¢ : S — Ug given by s — 1 + & for
all s € S.

8. Prove that the homomorphism 1 : Fg — Ug which extends v is a monomorphism
(equivalently, the set 14+ &, : s € S forms a basisi of a free subgroup in the group Ug).

Consider the ideal A := (&5 : s € §) C Qg, i.e. the ideal generated by all monomials &;. For
each natural n consider the power A™ of the ideal A, i.e. the ideal consisting of all power
series in which the coefficients of all monomials of degree less than n vanish. Consider also

the lower central series of the group Fg, i.e. the sequence of normal subgroups F ék) < Fg
given recursively by: Fél) = Fyg, FékH) = [Fék), Fs].

9. Prove that for the commutator subgroup F éz) of the group Fs we have &(Fg)) =
Y(Fs) N1+ AZ).

10. Prove that for each natural n we have @(Fén)) C 1+ A"™. Deduce that (), Fén) = {1}.

11. (Residual nilpotency of free groups) Prove that a nonabelian free group Fl is
not nilpotent (i.e. for each n the subgroup F én) is nontrivial). Show also that Fg
is residually nilpotent, i.e. for each g € Fg \ {1} there is a nilpotent group P and a
homomorphism h : Fg — P which maps g to a nontrivial element h(g) # 1 in P.



