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Axioms of Euclidean Geometry after David Hilbert, 1899
(slightly modified)

Primitive notions (or basic terms):
point,
line (i.e. straight line),
incidence relation (for pairs point-line), denoted with the symbol €,
relation of order for points from any line p, denoted with the symbol <,
measure of segments, denoted m,
measure of angles, denoted with the symbol pu.

The other notions appearing in the statements of the axioms (such as segment, angle, half-line and half-plane)
need to be defined, in terms of primitive notions. Here are their definitions:
o for distinct points A, B belonging (i.e. incident) to a line p, the interval AB is a set consisting of points

A and B and all points C such that A <, C <, B or B <, C' <, 4;
a half-line started at A is any set of form {A} U{X e p: A <, X} or {A}U{X €p: X <, A}, where
p is any line containing A;

o an angle is a collection of two half-lines with common starting point not contained in a common line;
o a half-plane bounded by a line p is any set of form {Y : Y € p} U{C} U{X : CX Np = 0}, where C' is
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any point not lying on p.

Incidence axioms (i.e axioms concerning the relation of incidence)
For any two distinct points A and B there is exactly one line p passing through A and B.
Each line contains at least 2 distinct points.
There exist three points which do not lie on a common line.

Axioms of order
For points of any line p the relation <, is a linear order, i.e.:
(a) if A <, B then A # B;
(b) if A€ p, B€pand A# B, then precisely one of the conditions A <, B, B <,, A holds;
(c) it A<, B and B <, C then A <, C.
(Moritz Pasch’ Axiom) For any non-collinear points A, B, C' and any line p not passing through any of
these points, if p intersects the segment AB then it also intersects precisely one of the segments BC'
and AC.

Axioms of measure of segments
For any segment AB its measure m(AB) is a positive real number.
For each half-line r started at a point A, and for any positive real number d there is a point B € r such
that m(AB) = d.
If A<, B <, C then m(AB) + m(BC) = m(AC).

Axioms of measure of angles
For any angle rs (composed of half-lines r and s having common starting point) the measure p(rs) is a
real number from the open interval (0, 7).
For any line p and any half-plane 2 bounded by p, for any half-line » contained in p and any real
number « € (0,7) , there is a half-line s contained in Q which forms together with » an angle such that
u(rs) = a.
Let A,B,C and A’, B’,C’ be two triples of non-collinear points. If m(AB) = m(A’B’), m(AC) =
m(A'C") and u(BAC) = u(B'A'C") then u(ABC) = u(A'B'C").

Parallel Axiom
If A is a point not lying on a line p, then there is exactly one line through A not intersecting p.



